java 字节码指令集

This is a list of the instructions that make up the Java bytecode, an abstract machine language that is ultimately executed by the Java virtual machine. The Java bytecode is generated by language compilers targeting the Java Platform, most notably the Java programming language.

 

MnemonicOpcode
(in hex)
Other bytesStack
[before]→[after]
Description
aaload 32   arrayref, index → value load onto the stack a reference from an array
aastore 53   arrayref, index, value → store into a reference in an array
aconst_null 01   → null push a null reference onto the stack
aload 19 1: index → objectref load a reference onto the stack from a local variable #index
aload_0 2a   → objectref load a reference onto the stack from local variable 0
aload_1 2b   → objectref load a reference onto the stack from local variable 1
aload_2 2c   → objectref load a reference onto the stack from local variable 2
aload_3 2d   → objectref load a reference onto the stack from local variable 3
anewarray bd 2: indexbyte1, indexbyte2 count → arrayref create a new array of references of length count and component type identified by the class referenceindex (indexbyte1 << 8 + indexbyte2) in the constant pool
areturn b0   objectref → [empty] return a reference from a method
arraylength be   arrayref → length get the length of an array
astore 3a 1: index objectref → store a reference into a local variable #index
astore_0 4b   objectref → store a reference into local variable 0
astore_1 4c   objectref → store a reference into local variable 1
astore_2 4d   objectref → store a reference into local variable 2
astore_3 4e   objectref → store a reference into local variable 3
athrow bf   objectref → [empty], objectref throws an error or exception (notice that the rest of the stack is cleared, leaving only a reference to the Throwable)
baload 33   arrayref, index → value load a byte or Boolean value from an array
bastore 54   arrayref, index, value → store a byte or Boolean value into an array
bipush 10 1: byte → value push a byte onto the stack as an integer value
breakpoint ca     reserved for breakpoints in Java debuggers; should not appear in any class file
caload 34   arrayref, index → value load a char from an array
castore 55   arrayref, index, value → store a char into an array
checkcast c0 2: indexbyte1, indexbyte2 objectref → objectref checks whether an objectref is of a certain type, the class reference of which is in the constant pool at index (indexbyte1 << 8 + indexbyte2)
d2f 90   value → result convert a double to a float
d2i 8e   value → result convert a double to an int
d2l 8f   value → result convert a double to a long
dadd 63   value1, value2 → result add two doubles
daload 31   arrayref, index → value load a double from an array
dastore 52   arrayref, index, value → store a double into an array
dcmpg 98   value1, value2 → result compare two doubles
dcmpl 97   value1, value2 → result compare two doubles
dconst_0 0e   → 0.0 push the constant 0.0 onto the stack
dconst_1 0f   → 1.0 push the constant 1.0 onto the stack
ddiv 6f   value1, value2 → result divide two doubles
dload 18 1: index → value load a double value from a local variable #index
dload_0 26   → value load a double from local variable 0
dload_1 27   → value load a double from local variable 1
dload_2 28   → value load a double from local variable 2
dload_3 29   → value load a double from local variable 3
dmul 6b   value1, value2 → result multiply two doubles
dneg 77   value → result negate a double
drem 73   value1, value2 → result get the remainder from a division between two doubles
dreturn af   value → [empty] return a double from a method
dstore 39 1: index value → store a double value into a local variable #index
dstore_0 47   value → store a double into local variable 0
dstore_1 48   value → store a double into local variable 1
dstore_2 49   value → store a double into local variable 2
dstore_3 4a   value → store a double into local variable 3
dsub 67   value1, value2 → result subtract a double from another
dup 59   value → value, value duplicate the value on top of the stack
dup_x1 5a   value2, value1 → value1, value2, value1 insert a copy of the top value into the stack two values from the top. value1 and value2 must not be of the type double or long.
dup_x2 5b   value3, value2, value1 → value1, value3, value2, value1 insert a copy of the top value into the stack two (if value2 is double or long it takes up the entry of value3, too) or three values (if value2 is neither double nor long) from the top
dup2 5c   {value2, value1} → {value2, value1}, {value2, value1} duplicate top two stack words (two values, if value1 is not double nor long; a single value, if value1 is double or long)
dup2_x1 5d   value3, {value2, value1} → {value2, value1}, value3, {value2, value1} duplicate two words and insert beneath third word (see explanation above)
dup2_x2 5e   {value4, value3}, {value2, value1} → {value2, value1}, {value4, value3}, {value2, value1} duplicate two words and insert beneath fourth word
f2d 8d   value → result convert a float to a double
f2i 8b   value → result convert a float to an int
f2l 8c   value → result convert a float to a long
fadd 62   value1, value2 → result add two floats
faload 30   arrayref, index → value load a float from an array
fastore 51   arrayref, index, value → store a float in an array
fcmpg 96   value1, value2 → result compare two floats
fcmpl 95   value1, value2 → result compare two floats
fconst_0 0b   → 0.0f push 0.0f on the stack
fconst_1 0c   → 1.0f push 1.0f on the stack
fconst_2 0d   → 2.0f push 2.0f on the stack
fdiv 6e   value1, value2 → result divide two floats
fload 17 1: index → value load a float value from a local variable #index
fload_0 22   → value load a float value from local variable 0
fload_1 23   → value load a float value from local variable 1
fload_2 24   → value load a float value from local variable 2
fload_3 25   → value load a float value from local variable 3
fmul 6a   value1, value2 → result multiply two floats
fneg 76   value → result negate a float
frem 72   value1, value2 → result get the remainder from a division between two floats
freturn ae   value → [empty] return a float
fstore 38 1: index value → store a float value into a local variable #index
fstore_0 43   value → store a float value into local variable 0
fstore_1 44   value → store a float value into local variable 1
fstore_2 45   value → store a float value into local variable 2
fstore_3 46   value → store a float value into local variable 3
fsub 66   value1, value2 → result subtract two floats
getfield b4 2: index1, index2 objectref → value get a field value of an object objectref, where the field is identified by field reference in the constant pool index (index1 << 8 + index2)
getstatic b2 2: index1, index2 → value get a static field value of a class, where the field is identified by field reference in the constant pool index (index1 << 8 + index2)
goto a7 2: branchbyte1, branchbyte2 [no change] goes to another instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
goto_w c8 4: branchbyte1, branchbyte2, branchbyte3, branchbyte4 [no change] goes to another instruction at branchoffset (signed int constructed from unsigned bytes branchbyte1 << 24 + branchbyte2 << 16 + branchbyte3 << 8 + branchbyte4)
i2b 91   value → result convert an int into a byte
i2c 92   value → result convert an int into a character
i2d 87   value → result convert an int into a double
i2f 86   value → result convert an int into a float
i2l 85   value → result convert an int into a long
i2s 93   value → result convert an int into a short
iadd 60   value1, value2 → result add two ints
iaload 2e   arrayref, index → value load an int from an array
iand 7e   value1, value2 → result perform a bitwise and on two integers
iastore 4f   arrayref, index, value → store an int into an array
iconst_m1 02   → -1 load the int value -1 onto the stack
iconst_0 03   → 0 load the int value 0 onto the stack
iconst_1 04   → 1 load the int value 1 onto the stack
iconst_2 05   → 2 load the int value 2 onto the stack
iconst_3 06   → 3 load the int value 3 onto the stack
iconst_4 07   → 4 load the int value 4 onto the stack
iconst_5 08   → 5 load the int value 5 onto the stack
idiv 6c   value1, value2 → result divide two integers
if_acmpeq a5 2: branchbyte1, branchbyte2 value1, value2 → if references are equal, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
if_acmpne a6 2: branchbyte1, branchbyte2 value1, value2 → if references are not equal, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
if_icmpeq 9f 2: branchbyte1, branchbyte2 value1, value2 → if ints are equal, branch to instruction at branchoffset (signed short constructed from unsigned bytesbranchbyte1 << 8 + branchbyte2)
if_icmpge a2 2: branchbyte1, branchbyte2 value1, value2 → if value1 is greater than or equal to value2, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
if_icmpgt a3 2: branchbyte1, branchbyte2 value1, value2 → if value1 is greater than value2, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
if_icmple a4 2: branchbyte1, branchbyte2 value1, value2 → if value1 is less than or equal to value2, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
if_icmplt a1 2: branchbyte1, branchbyte2 value1, value2 → if value1 is less than value2, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
if_icmpne a0 2: branchbyte1, branchbyte2 value1, value2 → if ints are not equal, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
ifeq 99 2: branchbyte1, branchbyte2 value → if value is 0, branch to instruction at branchoffset (signed short constructed from unsigned bytesbranchbyte1 << 8 + branchbyte2)
ifge 9c 2: branchbyte1, branchbyte2 value → if value is greater than or equal to 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
ifgt 9d 2: branchbyte1, branchbyte2 value → if value is greater than 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
ifle 9e 2: branchbyte1, branchbyte2 value → if value is less than or equal to 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
iflt 9b 2: branchbyte1, branchbyte2 value → if value is less than 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
ifne 9a 2: branchbyte1, branchbyte2 value → if value is not 0, branch to instruction at branchoffset (signed short constructed from unsigned bytesbranchbyte1 << 8 + branchbyte2)
ifnonnull c7 2: branchbyte1, branchbyte2 value → if value is not null, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
ifnull c6 2: branchbyte1, branchbyte2 value → if value is null, branch to instruction at branchoffset (signed short constructed from unsigned bytesbranchbyte1 << 8 + branchbyte2)
iinc 84 2: index, const [No change] increment local variable #index by signed byte const
iload 15 1: index → value load an int value from a local variable #index
iload_0 1a   → value load an int value from local variable 0
iload_1 1b   → value load an int value from local variable 1
iload_2 1c   → value load an int value from local variable 2
iload_3 1d   → value load an int value from local variable 3
impdep1 fe     reserved for implementation-dependent operations within debuggers; should not appear in any class file
impdep2 ff     reserved for implementation-dependent operations within debuggers; should not appear in any class file
imul 68   value1, value2 → result multiply two integers
ineg 74   value → result negate int
instanceof c1 2: indexbyte1, indexbyte2 objectref → result determines if an object objectref is of a given type, identified by class reference index in constant pool (indexbyte1 << 8 + indexbyte2)
invokedynamic ba 4: indexbyte1, indexbyte2, 0, 0 [arg1, [arg2 ...]] → invokes a dynamic method identified by method reference index in constant pool (indexbyte1 << 8 + indexbyte2)
invokeinterface b9 4: indexbyte1, indexbyte2, count, 0 objectref, [arg1, arg2, ...] → invokes an interface method on object objectref, where the interface method is identified by method reference index in constant pool (indexbyte1 << 8 + indexbyte2)
invokespecial b7 2: indexbyte1, indexbyte2 objectref, [arg1, arg2, ...] → invoke instance method on object objectref, where the method is identified by method reference index in constant pool (indexbyte1 << 8 + indexbyte2)
invokestatic b8 2: indexbyte1, indexbyte2 [arg1, arg2, ...] → invoke a static method, where the method is identified by method reference index in constant pool (indexbyte1 << 8 + indexbyte2)
invokevirtual b6 2: indexbyte1, indexbyte2 objectref, [arg1, arg2, ...] → invoke virtual method on object objectref, where the method is identified by method reference index in constant pool (indexbyte1 << 8 + indexbyte2)
ior 80   value1, value2 → result bitwise int or
irem 70   value1, value2 → result logical int remainder
ireturn ac   value → [empty] return an integer from a method
ishl 78   value1, value2 → result int shift left
ishr 7a   value1, value2 → result int arithmetic shift right
istore 36 1: index value → store int value into variable #index
istore_0 3b   value → store int value into variable 0
istore_1 3c   value → store int value into variable 1
istore_2 3d   value → store int value into variable 2
istore_3 3e   value → store int value into variable 3
isub 64   value1, value2 → result int subtract
iushr 7c   value1, value2 → result int logical shift right
ixor 82   value1, value2 → result int xor
jsr a8 2: branchbyte1, branchbyte2 → address jump to subroutine at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2) and place the return address on the stack
jsr_w c9 4: branchbyte1, branchbyte2, branchbyte3, branchbyte4 → address jump to subroutine at branchoffset (signed int constructed from unsigned bytes branchbyte1 << 24 + branchbyte2 << 16 + branchbyte3 << 8 + branchbyte4) and place the return address on the stack
l2d 8a   value → result convert a long to a double
l2f 89   value → result convert a long to a float
l2i 88   value → result convert a long to a int
ladd 61   value1, value2 → result add two longs
laload 2f   arrayref, index → value load a long from an array
land 7f   value1, value2 → result bitwise and of two longs
lastore 50   arrayref, index, value → store a long to an array
lcmp 94   value1, value2 → result compare two longs values
lconst_0 09   → 0L push the long 0 onto the stack
lconst_1 0a   → 1L push the long 1 onto the stack
ldc 12 1: index → value push a constant #index from a constant pool (String, int or float) onto the stack
ldc_w 13 2: indexbyte1, indexbyte2 → value push a constant #index from a constant pool (String, int or float) onto the stack (wide index is constructed as indexbyte1 << 8 + indexbyte2)
ldc2_w 14 2: indexbyte1, indexbyte2 → value push a constant #index from a constant pool (double or long) onto the stack (wide index is constructed as indexbyte1 << 8 + indexbyte2)
ldiv 6d   value1, value2 → result divide two longs
lload 16 1: index → value load a long value from a local variable #index
lload_0 1e   → value load a long value from a local variable 0
lload_1 1f   → value load a long value from a local variable 1
lload_2 20   → value load a long value from a local variable 2
lload_3 21   → value load a long value from a local variable 3
lmul 69   value1, value2 → result multiply two longs
lneg 75   value → result negate a long
lookupswitch ab 4+: <0-3 bytes padding>, defaultbyte1, defaultbyte2, defaultbyte3, defaultbyte4, npairs1, npairs2, npairs3, npairs4, match-offset pairs... key → a target address is looked up from a table using a key and execution continues from the instruction at that address
lor 81   value1, value2 → result bitwise or of two longs
lrem 71   value1, value2 → result remainder of division of two longs
lreturn ad   value → [empty] return a long value
lshl 79   value1, value2 → result bitwise shift left of a long value1 by int value2 positions
lshr 7b   value1, value2 → result bitwise shift right of a long value1 by int value2 positions
lstore 37 1: index value → store a long value in a local variable #index
lstore_0 3f   value → store a long value in a local variable 0
lstore_1 40   value → store a long value in a local variable 1
lstore_2 41   value → store a long value in a local variable 2
lstore_3 42   value → store a long value in a local variable 3
lsub 65   value1, value2 → result subtract two longs
lushr 7d   value1, value2 → result bitwise shift right of a long value1 by int value2 positions, unsigned
lxor 83   value1, value2 → result bitwise exclusive or of two longs
monitorenter c2   objectref → enter monitor for object ("grab the lock" - start of synchronized() section)
monitorexit c3   objectref → exit monitor for object ("release the lock" - end of synchronized() section)
multianewarray c5 3: indexbyte1, indexbyte2, dimensions count1, [count2,...] → arrayref create a new array of dimensions dimensions with elements of type identified by class reference in constant pool index (indexbyte1 << 8 + indexbyte2); the sizes of each dimension is identified bycount1, [count2, etc.]
new bb 2: indexbyte1, indexbyte2 → objectref create new object of type identified by class reference in constant pool index (indexbyte1 << 8 + indexbyte2)
newarray bc 1: atype count → arrayref create new array with count elements of primitive type identified by atype
nop 00   [No change] perform no operation
pop 57   value → discard the top value on the stack
pop2 58   {value2, value1} → discard the top two values on the stack (or one value, if it is a double or long)
putfield b5 2: indexbyte1, indexbyte2 objectref, value → set field to value in an object objectref, where the field is identified by a field reference index in constant pool (indexbyte1 << 8 + indexbyte2)
putstatic b3 2: indexbyte1, indexbyte2 value → set static field to value in a class, where the field is identified by a field reference index in constant pool (indexbyte1 << 8 + indexbyte2)
ret a9 1: index [No change] continue execution from address taken from a local variable #index (the asymmetry with jsr is intentional)
return b1   → [empty] return void from method
saload 35   arrayref, index → value load short from array
sastore 56   arrayref, index, value → store short to array
sipush 11 2: byte1, byte2 → value push a short onto the stack
swap 5f   value2, value1 → value1, value2 swaps two top words on the stack (note that value1 and value2 must not be double or long)
tableswitch aa 4+: [0-3 bytes padding], defaultbyte1, defaultbyte2, defaultbyte3, defaultbyte4, lowbyte1, lowbyte2, lowbyte3, lowbyte4, highbyte1, highbyte2, highbyte3, highbyte4, jump offsets... index → continue execution from an address in the table at offset index
wide c4 3/5: opcode, indexbyte1, indexbyte2
or
iinc, indexbyte1, indexbyte2, countbyte1, countbyte2
[same as for corresponding instructions] execute opcode, where opcode is either iload, fload, aload, lload, dload, istore, fstore, astore, lstore, dstore, or ret, but assume the index is 16 bit; or execute iinc, where the index is 16 bits and the constant to increment by is a signed 16 bit short
(no name) cb-fd     these values are currently unassigned for opcodes and are reserved for future use

参考来源:

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

posted @ 2014-10-21 20:48  charili  阅读(1465)  评论(0编辑  收藏  举报