插板法(排列组合)

插板法的条件

(1)每个元素都是相同的

(2)分成的组,每组的元素不为空

就比如下面这个例子,分出来的组的元素是不为空的

 

将10个相同的球放到3个不同的篮子里面去,每个篮子至少一个,问有多少种放法

0-0-0-0-0-0-0-0-0-0     0代表球,-代表板子, 将9个板插入到10个球中, 我们只要从中选出2个板子, 自然而然就把球分成三堆了

即C(9,2)

 

将10个相同的球放到3个不同的篮子里面去,每个篮子可以为空,问有多少种方法

因为每个篮子可以为空,即每组的元素可以为空, 不符合第二个条件。 我们可以事先在每个篮子里放一个球, 那么每个篮子就不为空了

那么就转为将13个相同的球放到3个不同的篮子里面去, 每个篮子至少有一个球

即C(12,2)

 

将10个相同的篮子放到3个不同的篮子里面去,要求第一个篮子至少一个球, 第二个篮子至少3个球, 第三个篮子可以为空

可以将10个球中的三个放到第二个篮子里去,  然后再在第二个和第三个篮子里面放一个球

就转为了将9个球放到3个篮子里面去, 每个篮子至少一个球

即C(8,3)

 

posted @ 2015-06-25 19:28  justPassBy  阅读(10736)  评论(0编辑  收藏  举报