一个小的机器学习代码

import tensorflow as tf
import numpy as np

x_data= np.random.rand(100).astype(np.float32)
y_data = x_data*0.1 +0.3

Weights = tf.Variable(tf.random_uniform([1],-1.0,1.0))
biases = tf.Variable(tf.zeros([1]))

y =Weights*x_data + biases

loss = tf.reduce_mean(tf.square(y-y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

init = tf.initialize_all_variables()

sess =tf.Session()
sess.run(init)

for step in range(201):
    sess.run(train)
    if step % 20 ==0:
        print(step,sess.run(Weights),sess.run(biases))

  

posted @ 2018-12-05 19:51  萧白白  阅读(200)  评论(0编辑  收藏  举报