一个小的机器学习代码
import tensorflow as tf import numpy as np x_data= np.random.rand(100).astype(np.float32) y_data = x_data*0.1 +0.3 Weights = tf.Variable(tf.random_uniform([1],-1.0,1.0)) biases = tf.Variable(tf.zeros([1])) y =Weights*x_data + biases loss = tf.reduce_mean(tf.square(y-y_data)) optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss) init = tf.initialize_all_variables() sess =tf.Session() sess.run(init) for step in range(201): sess.run(train) if step % 20 ==0: print(step,sess.run(Weights),sess.run(biases))