topcoder srm 470 div1
problem1 link
首先预处理在已选字母的状态为$state$时是否可达。
然后就是按照题目进行dp。设$f[i]$表示已选字母集合为$i$时的结果。
每次可以根据$i$中含有的字母是奇数还是偶数个来确定现在该轮到谁选择。
problem2 link
交点可以分为三部分:
(1)已经确定的线之间的交点;
(2)未确定的线之间的交点;
(3)已确定的线与未确定线之间的交点。
第一部分比较容易计算。
对于第二部分,设$f[i]$表示$i$对点之间连线交点期望。那么对于$f[i+1]$来说,就是在最后添加一对点,然后枚举这一对点中的一个与对面集合中那个点相连,可以得到:$f[i+1]=\frac{1}{i+1}\sum_{k=1}^{i+1}(f[i]+k-1)=f[i]+\frac{i}{2}$,进而可以直接计算出$f[n]$的通项公式。
对于第三部分,可以枚举下半部分每个未匹配的点与每条确定的点有交点的概率。
problem3 link
设宽高为$m,n$
将要连接的城市分别编号为0,1,2,3等,最多到7.规定$2k$到$2k+1$连接。
令$f[mask][x][y]$表示将$mask$代表的城市在点$(x,y)$处汇聚到一起的最小代价。
按照$mask$从小到大依次进行计算。令状态$p1,p2$满足$mask$^$p1=p2$且$p1!=mask,p2!=mask$
计算到$mask$时,一定计算完了$p1,p2$,此时可以先用$f[p1][x][y]+f[p2][x][y]$来更新$f[mask][x][y]$
然后从每个$f[mask][x][y]$开始进行bfs,来更新其他的$f[mask][x^{'}][y^{'}]$.
最后一个计算阶段。分别编号每一对要连接的城市为0,1,2,3(最多到3,即有四对)。令$dp[state]$表示将$state(<2^{4})$表示的城市对连接的最小代价,初始化为,比如$dp[(0010)_{2}]=min(f[(00001100)_{2}][x][y])$
对后对于每个$dp$的状态,用其子状态更新它。
code for problem1
import java.util.*; import java.math.*; import static java.lang.Math.*; public class DoorsGame { static final int N = 1 << 16; int[] bitNum = new int[N]; boolean[] g1 = null; boolean[] g2 = null; int[] f = new int[N]; int validMask = 0; public int determineOutcome(String doors, int trophy) { for (int i = 1; i < N; ++ i) { bitNum[i] = bitNum[i >> 1] + (i & 1); } String s1 = doors.substring(0, trophy); String s2 = (new StringBuilder(doors.substring(trophy))).reverse().toString(); g1 = cal(s1); g2 = cal(s2); Arrays.fill(f, Integer.MAX_VALUE); for (int i = 0; i < doors.length(); ++ i) { validMask |= 1 << (doors.charAt(i) - 'A'); } return dfs(0); } int dfs(int mask) { if (g1[mask]) { if (g2[mask]) { return 0; } return bitNum[mask]; } else { if (g2[mask]) { return -bitNum[mask]; } } if (f[mask] != Integer.MAX_VALUE) { return f[mask]; } if (contains(bitNum[mask], 0)) { for (int i = 0; i < 16; ++ i) { if (!contains(mask, i) && contains(validMask, i)) { int ans = dfs(mask | (1 << i)); if (f[mask] == Integer.MAX_VALUE) { f[mask] = ans; continue; } if (ans < 0) { if (f[mask] >= 0 || f[mask] < ans) { f[mask] = ans; } } else if (ans == 0) { if (f[mask] > 0) { f[mask] = ans; } } else { if (f[mask] > 0 && f[mask] < ans) { f[mask] = ans; } } } } } else { for (int i = 0; i < 16; ++ i) { if (!contains(mask, i)) { int ans = dfs(mask | (1 << i)); if (f[mask] == Integer.MAX_VALUE) { f[mask] = ans; continue; } if (ans < 0) { if (f[mask] < 0 && f[mask] > ans) { f[mask] = ans; } } else if (ans == 0) { if (f[mask] < 0) { f[mask] = ans; } } else { if (f[mask] <= 0 || f[mask] > ans) { f[mask] = ans; } } } } } return f[mask]; } boolean[] cal(String s) { boolean[] result = new boolean[N]; for (int i = 0; i < N; ++ i) { int p = 0; while (p < s.length()) { if (contains(i, s.charAt(p) - 'A')) { p += 1; } else { break; } } if (p == s.length()) { result[i] = true; } } return result; } boolean contains(int mask, int t) { return (mask & (1 << t)) != 0; } }
code for problem2
import java.util.*; import java.math.*; import static java.lang.Math.*; public class DrawingLines { public double countLineCrossings(int n, int[] startDot, int[] endDot) { double result = 0; final int m = startDot.length; for (int i = 0; i < m; ++ i) { for (int j = i + 1; j < m; ++ j) { boolean upper = startDot[i] < startDot[j]; boolean lower = endDot[i] < endDot[j]; if (upper != lower) { result += 1; } } } result += (n - m) * (n - m - 1) / 4.0; boolean[] b = new boolean[n + 1]; int[] pSum = new int[n + 1]; for (int i = 0; i < m; ++ i) { b[endDot[i]] = true; pSum[startDot[i]] = 1; } for (int i = 1; i <= n; ++ i) { pSum[i] += pSum[i - 1]; } if (n == m) { return result; } for (int i = 1; i <= n; ++ i) { if (b[i]) { continue; } for (int j = 0; j < m; ++ j) { if (endDot[j] < i) { result += 1.0 * (startDot[j] - pSum[startDot[j]]) / (n - m); } else { result += 1.0 * (n - startDot[j] - (m - pSum[startDot[j]])) / (n - m); } } } return result; } }
code for problem3
import java.util.*; import java.math.*; import static java.lang.Math.*; public class BuildingRoads { int getCost(char c) { if ('a' <= c && c <= 'z') { return c - 'a' + 1; } if ('A' <= c && c <= 'Z') { return (c - 'A' + 1) * 100; } if ('1' <= c && c <= '9') { return (c - '0') * 10000; } if (c == '0') { return 100000; } return 0; } Map<Character,Integer> map = new HashMap<>(); int getIndex(Character c) { if (c == '!' || c == '@' || c == '#' || c == '$') { if (map.containsKey(c)) { return map.get(c) + 1; } int s = map.size(); map.put(c, s * 2); return s * 2; } return -1; } int[][] g = null; int n,m; int[][][] f = null; List<Integer> listx = new ArrayList<>(); List<Integer> listy = new ArrayList<>(); public int destroyRocks(String[] field) { n = field.length; m = field[0].length(); g = new int[n][m]; for (int i = 0; i < n; ++ i) { for (int j = 0; j < m; ++ j) { g[i][j] = getCost(field[i].charAt(j)); int id = getIndex(field[i].charAt(j)); if (id != -1) { while (listx.size() < id + 1) { listx.add(0); listy.add(0); } listx.set(id, i); listy.set(id, j); } } } final int M = listx.size(); f = new int[1 << M][n][m]; for (int i = 0; i < (1 << M); ++ i) { for (int j = 0; j < n; ++ j) { Arrays.fill(f[i][j], -1); } } for (int i = 0; i < M; ++ i) { f[1 << i][listx.get(i)][listy.get(i)] = 0; } for (int i = 0; i < (1 << M); ++ i) { update(i); } int[] dp = new int[1 << (M / 2)]; Arrays.fill(dp, -1); for (int i = 0; i < dp.length; ++ i) { int mask = 0; for (int j = 0; j < M / 2; ++ j) { if (contains(i, 1 << j)) { mask |= 3 << (j * 2); } } for (int x = 0; x < n; ++ x) { for (int y = 0; y < m; ++ y) { int t = f[mask][x][y] + g[x][y]; if (t != -1 && (dp[i] == -1 || dp[i] > t)) { dp[i] = t; } } } } for (int i = 0; i < dp.length; ++ i) { for (int j = 0; j < i; ++ j) { if (!contains(i, j)) { continue; } if (dp[j] != -1 && dp[i ^ j] != -1) { int t = dp[j] + dp[i ^ j]; if (dp[i] == -1 || dp[i] > t) { dp[i] = t; } } } } return dp[dp.length - 1]; } static class Node { int cost; int x; int y; Node() {} Node(int cost, int x, int y) { this.cost = cost; this.x = x; this.y = y; } } public static class NodeCompare implements Comparator<Node> { @Override public int compare(Node c1, Node c2) { return c1.cost - c2.cost; } }; Queue<Node> queue = new PriorityQueue<>(new NodeCompare()); void upd(int x, int y, int cost, int mask) { if (f[mask][x][y] == -1 || f[mask][x][y] > cost) { f[mask][x][y] = cost; queue.offer(new Node(cost, x, y)); } } boolean contains(int x, int y) { return (x & y) == y; } int[] dx = {1, -1, 0, 0}; int[] dy = {0, 0, 1, -1}; void update(int mask) { for (int i = 0; i < mask; ++ i) { if (!contains(mask, i)) { continue; } for (int x = 0; x < n; ++ x) { for (int y = 0; y < m; ++ y) { if (f[i][x][y] != -1 && f[mask ^ i][x][y] != -1) { int t = f[i][x][y] + f[mask ^ i][x][y]; if (f[mask][x][y] == -1 || f[mask][x][y] > t) { f[mask][x][y] = t; } } } } } while (!queue.isEmpty()) { queue.poll(); } for (int x = 0; x < n; ++ x) { for (int y = 0; y < m; ++ y) { if (f[mask][x][y] != -1) { queue.add(new Node(f[mask][x][y], x, y)); } } } while (!queue.isEmpty()) { Node node = queue.poll(); int cost = node.cost; int x = node.x; int y = node.y; if (f[mask][x][y] != cost) { continue; } for (int i = 0; i < 4; ++ i) { int xx = x + dx[i]; int yy = y + dy[i]; if (xx < 0 || xx >= n || yy < 0 || yy >= m) { continue; } int newCost =cost; if (g[x][y] != g[xx][yy]) { newCost += g[x][y]; } upd(xx, yy, newCost, mask); } } } }