topcoder srm 680 div1

problem1 link

将限制按照$x$排序。那么$[upTo_{i}+1,upTo_{i+1}]$中数字个数为$quantity_{i+1}-quantity_{i}$。然后进行动态规划。$f[i][j]$表示考虑了前$i$个区间的限制,其中偶数的个数为$j$时是否成立。

problem2 link

按照如下的规则构造这个图:首先$[1,n]$区间每个节点是单独的一个分量,每次将该区间分为两半。这两半分别需要$k-1$次。最后将这两部分连在一起。

problem3 link

如果出现这样一种情况,就是需要若干种字母去匹配另外若干种字母时,它们一定是多对一或者一对多,而不会出现多对多的情况。

假设字母$a,b,c,d$分别有$3,5,7,1$个。如果$a,b$去匹配$c,d$,不如先让$a,b$匹配一对,$c,d$匹配一对,然后2个$a$,4个$b$去匹配6个$c$。

所以如果前面出现大于一种字母有剩余的话,可以记录最后抵消它们的是哪一种字母即可。

动态规划的方程为$f[i][j][k][t]$表示到第$i$个为止,还剩下$j$个需要与后面的进行配对,其中前面剩余的未参与配对的为$t$个,$k$指示了前面剩余的$j$个是一种还是多种。

 

code for problem1

#include <algorithm>
#include <string>
#include <vector>

class BearFair {
 public:
  std::string isFair(int n, int b, const std::vector<int> &upTo,
                     const std::vector<int> &quantity) {
    int m = static_cast<int>(upTo.size());
    std::vector<std::pair<int, int>> V(m);
    for (int i = 0; i < m; ++i) {
      V[i] = {upTo[i], quantity[i]};
    }
    std::sort(V.begin(), V.end());
    if (V.back().second > n) {
      return "unfair";
    }

    struct node {
      int ll, rr, cnt;

      node() = default;
      node(int ll, int rr, int cnt) : ll(ll), rr(rr), cnt(cnt) {}
    };
    std::vector<node> all;

    for (int i = 0; i < m; ++i) {
      if (0 == i) {
        if (V[i].second > V[i].first) {
          return "unfair";
        }
        all.emplace_back(1, V[i].first, V[i].second);
      } else {
        if (V[i].second < V[i - 1].second ||
            (V[i].second - V[i - 1].second > V[i].first - V[i - 1].first) ||
            (V[i].second != V[i - 1].second && V[i].first == V[i - 1].first)) {
          return "unfair";
        }
        if (V[i].first != V[i - 1].first) {
          all.emplace_back(V[i - 1].first + 1, V[i].first,
                           V[i].second - V[i - 1].second);
        }
      }
    }

    if (V.back().first < b) {
      all.emplace_back(V.back().first + 1, b, n - V.back().second);
    } else if (V.back().second != n) {
      return "unfair";
    }
    if (all.empty()) {
      return "fair";
    }

    int M = static_cast<int>(all.size());
    std::vector<std::vector<bool>> f(M, std::vector<bool>(n + 1));
    for (int i = 0; i <= all[0].cnt && i <= all[0].rr / 2; ++i) {
      if (all[0].cnt - i <= all[0].rr - all[0].rr / 2) {
        f[0][i] = true;
      }
    }
    for (int i = 1; i < M; ++i) {
      int even = all[i].rr / 2 - (all[i].ll - 1) / 2;
      int odd = all[i].rr - all[i].ll + 1 - even;
      for (int j = 0; j <= n; ++j)
        if (f[i - 1][j]) {
          for (int k = 0; k <= all[i].cnt && j + k <= n && k <= even; ++k) {
            if (all[i].cnt - k <= odd) {
              f[i][j + k] = 1;
            }
          }
        }
    }
    if (f[M - 1][n / 2]) {
      return "fair";
    }
    return "unfair";
  }
};

code for problem2

#include <unordered_set>
#include <vector>

class BearSpans {
 public:
  std::vector<int> findAnyGraph(int n, int m, int k) {
    this->n = n;
    this->m = m;
    for (int i = 0; i < n; ++i) {
      for (int j = i + 1; j < n; ++j) {
        all_edges.insert(i * n + j);
      }
    }
    if (!Dfs(0, n - 1, k)) {
      return {-1};
    }
    while (index < m) {
      auto p = *all_edges.begin();
      Add(p / n, p % n);
      all_edges.erase(p);
      ++index;
    }
    return result;
  }

 private:
  bool Dfs(int L, int R, int k) {
    if (k == 1) {
      for (int i = L + 1; i <= R; ++i) {
        Add(L, i);
        ++index;
      }
      return true;
    }

    if (L + 1 == R) {
      if (k != 1) {
        return false;
      }
      Add(L, R);
      ++index;
      return true;
    }
    if (R - L + 1 == 3) {
      return false;
    }
    int M = (L + R) >> 1;
    if (!Dfs(L, M, k - 1) || !Dfs(M + 1, R, k - 1)) {
      return false;
    }
    Add(L, R);
    ++index;
    return true;
  }

  void Add(int u, int v) {
    result.push_back(u + 1);
    result.push_back(v + 1);
    all_edges.erase(u * n + v);
  }
  int n;
  int m;
  std::unordered_set<int> all_edges;
  std::vector<int> result;
  int index = 0;
};

code for problem3

#include <limits>
#include <string>
#include <vector>

constexpr int kMaxN = 2500;
constexpr int kMaxType = 6;
constexpr int kInfinite = std::numeric_limits<int>::max();

int f[2][kMaxN][kMaxType * 2][kMaxType + 1];

class BearPairs {
 public:
  int minCost(const std::string &s, const std::vector<int> &cost, int m) {
    int n = static_cast<int>(s.size());
    auto Clear = [&](int t) {
      for (int i = 0; i < n; ++i) {
        for (int j = 0; j < kMaxType * 2; ++j) {
          for (int k = 0; k <= m; ++k) {
            f[t][i][j][k] = kInfinite;
          }
        }
      }
    };
    auto Update = [&](int &x, int y) {
      if (x > y) {
        x = y;
      }
    };
    Clear(0);
    f[0][0][0][1] = 0;
    f[0][1][s[0] - 'a'][0] = cost[0];
    int pre = 0;
    int cur = 1;
    for (int i = 1; i < n; ++i) {
      Clear(cur);
      for (int j = 0; j <= i; ++j) {
        for (int k = 0; k < kMaxType * 2; ++k) {
          for (int t = 0; t <= m; ++t) {
            int c0 = f[pre][j][k][t];
            if (c0 == kInfinite) {
              continue;
            }
            int c1 = c0 + cost[i] + 100 * i;
            int c2 = c0 + cost[i] - 100 * i;
            int v = s[i] - 'a';
            if (t < m) {
              Update(f[cur][j][k][t + 1], c0);
            }
            if (j == 0) {
              Update(f[cur][1][v][t], c2);
            } else if (k < kMaxType) {
              if (v == k) {
                Update(f[cur][j + 1][v][t], c2);
              } else {
                Update(f[cur][j - 1][k][t], c1);
                for (int other = 0; other < kMaxType; ++other) {
                  if (other != v && other != k) {
                    Update(f[cur][j + 1][kMaxType + other][t], c2);
                  }
                }
              }
            } else {
              if (v + kMaxType == k) {
                Update(f[cur][j - 1][k][t], c1);
              } else {
                Update(f[cur][j + 1][k][t], c2);
              }
            }
          }
        }
      }
      pre ^= 1;
      cur ^= 1;
    }
    int result = kInfinite;
    for (int k = 0; k < kMaxType * 2; ++k) {
      result = std::min(result, f[pre][0][k][m]);
    }
    if (result == kInfinite) {
      return -1;
    }
    return result;
  }
};

 

posted @ 2017-06-14 10:04  朝拜明天19891101  阅读(214)  评论(0编辑  收藏  举报