Codeforces Beta Round #51 D. Beautiful numbers 数位dp
Volodya is an odd boy and his taste is strange as well. It seems to him that a positive integer number is beautiful if and only if it is divisible by each of its nonzero digits. We will not argue with this and just count the quantity of beautiful numbers in given ranges.
The first line of the input contains the number of cases t (1 ≤ t ≤ 10). Each of the next t lines contains two natural numbers li and ri(1 ≤ li ≤ ri ≤ 9 ·1018).
Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preffered to use cin (also you may use %I64d).
Output should contain t numbers — answers to the queries, one number per line — quantities of beautiful numbers in given intervals (from li to ri, inclusively).
1
1 9
9
1
12 15
2
题意:美丽数定义:一个数可以整除它每一位数;问区间内有多少美丽数;
思路:
发现1.。。。9的lcm为2520
数位dp
dp[i][j][k]表示第i位i位数的lcm,余2520的余数的个数;
#pragma comment(linker, "/STACK:1024000000,1024000000") #include<iostream> #include<cstdio> #include<cmath> #include<string> #include<queue> #include<algorithm> #include<stack> #include<cstring> #include<vector> #include<list> #include<set> #include<map> using namespace std; #define ll long long #define pi (4*atan(1.0)) #define eps 1e-4 #define bug(x) cout<<"bug"<<x<<endl; const int N=1e2+10,M=1e6+10,inf=2147483647; const ll INF=1e18+10,mod=1e7+7; ll bit[N],flag[M]; ll f[N][60][2530]; void init() { int s=1; for(int i=1;i<=2520;i++) if(2520%i==0) flag[i]=s++; } ll dp(int pos,int fl,ll m,ll sum) { if(pos==0)return (m%sum==0); if(fl&&f[pos][flag[sum]][m]!=-1)return f[pos][flag[sum]][m]; ll x=fl?9:bit[pos]; ll ans=0; for(ll i=0;i<=x;i++) { if(i) ans+=dp(pos-1,fl||i<x,(m*10+i)%2520,(sum*i)/__gcd(sum,i)); else ans+=dp(pos-1,fl||i<x,(m*10+i)%2520,sum); } if(fl)f[pos][flag[sum]][m]=ans; return ans; } ll getans(ll x) { int len=0; while(x) { bit[++len]=x%10; x/=10; } return dp(len,0,0,1); } int main() { init(); int T; scanf("%d",&T); memset(f,-1,sizeof(f)); while(T--) { ll l,r; scanf("%lld%lld",&l,&r); //cout<<getans(r)<<" "<<getans(l)<<endl; printf("%lld\n",getans(r)-getans(l-1)); } return 0; }