[Python] 03 - Lists, Dictionaries, Tuples, Set
List 列表
一、基础知识
-
基础功能
初始化方法
特例:初始化字符串
>>> sList = list("hello")
>>> sList
['h', 'e', 'l', 'l', 'o']
功能函数
append # 添加一个元素
pop # 拿走一个元素
sort
reverse
In [11]: dir(list) Out[11]: ['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']
-
强引用 & 弱应用
弱引用
与apend的区别是:extend只作用于List。
>>> L = [1, 2] >>> M = L >>> L += [3, 4] # 还是原来的对象,只是变大了 >>> L, M # M sees the in-place change too! ([1, 2, 3, 4], [1, 2, 3, 4])
强引用 --> 复制
>>> L = [1, 2] >>> M = L # L and M reference the same object >>> L = L + [3, 4] # 其实是新对象 >>> L, M # Changes L but not M ([1, 2, 3, 4], [1, 2])
强引用 --> [ : ] 代表了 ‘拷贝’
第一个变了;第二个没变,以为 [:] 代表了‘拷贝’ 的意思。
通过地址查看
二、元素遍历
-
直接遍历
For 循环
[ 某行第一个元素 for 某行 in 矩阵 ]
实例1:提取其中一列column.
>>> col2 = [row[1] for row in M] # Collect the items in column 2
>>> col2
[2, 5, 8]
>>> M # The matrix is unchanged
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>> [row[1] for row in M if row[1] % 2 == 0] # Filter out odd items
[2, 8]
实例2:有点pipeline的意思
>>> [[x ** 2, x ** 3] for x in range(4)] # Multiple values, "if" filters
[[0, 0], [1, 1], [4, 8], [9, 27]]
>>> [[x, x / 2, x * 2] for x in range(−6, 7, 2) if x > 0]
[[2, 1, 4], [4, 2, 8], [6, 3, 12]]
while ... else
while test: # Loop test statements # Loop body else: # Optional else statements # Run if didn't exit loop with break
这个else是个很好的东西,表示循环走到头了;有益代码阅读。
for ... else
for target in object: # Assign object items to target statements # Repeated loop body: use target else: # Optional else part statements # If we didn't hit a 'break'
lambda 迭代遍历
map() 会根据提供的函数对"指定序列"做映射。
<返回list类型> = map(function, iterable, ...)
# 1. 独立函数
>>>def square(x) : # 计算平方数 ... return x ** 2 ... >>> map(square, [1,2,3,4,5]) # 计算列表和:1+2+3+4+5 [1, 4, 9, 16, 25]
----------------------------------------------------------------
# 2. 匿名函数 >>> map(lambda x: x ** 2, [1, 2, 3, 4, 5]) # 使用 lambda 匿名函数 [1, 4, 9, 16, 25]
---------------------------------------------------------------- # 3. 提供了两个列表,对相同位置的列表数据进行相加 >>> map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10]) [3, 7, 11, 15, 19]
不同的类型是否Iterable的判断.
>>> from collections import Iterable >>> isinstance('abc', Iterable) # str是否可迭代 True >>> isinstance([1,2,3], Iterable) # list是否可迭代 True >>> isinstance(123, Iterable) # 整数是否可迭代 False
map & reduce
(1) map
>>> def f(x):
... return x * x
...
>>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> list(r)
[1, 4, 9, 16, 25, 36, 49, 64, 81]
(2) reduce
>>> from functools import reduce
>>> def fn(x, y):
... return x * 10 + y
...
>>> reduce(fn, [1, 3, 5, 7, 9])
13579
(3) map + reduce
典型的例子:第一步map,解析字符串数字;第二步reduce,求数字的和.
from functools import reduce
DIGITS = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}
def str2int(s):
def fn(x, y):
return x * 10 + y
def char2num(s):
return DIGITS[s]
return reduce(fn, map(char2num, s))
-
Iterable 遍历
Goto: [Advanced Python] 14 - "Generator": calculating prime
next
In [13]: M = [[1, 2, 3], # A 3 × 3 matrix, as nested lists ...: ...: [4, 5, 6], # Code can span lines if bracketed ...: ...: [7, 8, 9]]
In [14]: G = (sum(row) for row in M) # <----这里使用元组,返回的是iterable的结构 In [16]: next(G) # 输出一行 Out[16]: 6 In [17]: next(G) # 再输出一行 Out[17]: 15 In [18]: next(G) # 再输出一行 Out[18]: 24
列表(方括号),集合(大括号),字典(大括号),元组(圆括号) 效果对比,只有元组是Iterable的.
generator
yield x: Generator function send protocol
From: https://www.jianshu.com/p/d09778f4e055
带有 yield 的函数不再是一个普通函数,而是一个生成器 generator,可用于迭代,工作原理同next()。
类似 return 的关键字。
send(msg)与next()的区别在于send可以传递参数给yield表达式,这时传递的参数会作为yield表达式的值,而yield的参数是返回给调用者的值。
其实就是让一个函数分步执行:
>>> def get_0_1_2():
... yield 0
... yield 1
... yield 2
...
>>> get_0_1_2
<function get_0_1_2 at 0x00B2CB70>
generator = get_0_1_2() # 绑定了函数后就开始执行
>>> generator.next()
0
>>> generator.next()
1
>>> generator.next()
2
api有了稍许变化!【这个貌似好用】
generator = get_0_1_2() # 必须这么绑定一下,直接用函数名不行
In [83]: next(generator) Out[83]: 0 In [84]: next(generator) Out[84]: 1 In [85]: next(generator) Out[85]: 2 In [86]: next(generator)
Error.
迭代越界 StopIteration
>>> from itertools import chain >>> it = chain([1,2,3],[4,5,6],[7,8,9]) >>> while True: ... try: ... elem = it.next() ... except StopIteration: ... print "Last element was:", elem, "... do something special now" ... break ... print "Got element:", elem ... ... Got element: 1 Got element: 2 Got element: 3 Got element: 4 Got element: 5 Got element: 6 Got element: 7 Got element: 8 Got element: 9 Last element was: 9 ... do something special now >>>
-
嵌套遍历
"二级列表"处理
一来效率高;二来支持多列表。注意,解开”嵌套“的顺序。
matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
flat = [x for row in matrix for x in row]
print(flat)
"多条件"设置
matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
filtered = [[x for x in row if x % 3 == 0] for row in matrix if sum(row) >= 10]
print(filtered)
>>>
[[6], [9]]
-
高性能测量
查看内存占用
import sys
sys.getsizeof([1,2,3])
耗时对比
In [1]: %timeit l = [1,2,3,4,5,6,7,8,9,0] 58.1 ns ± 1.42 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each) In [2]: %timeit l = (1,2,3,4,5,6,7,8,9,0) 9.78 ns ± 0.114 ns per loop (mean ± std. dev. of 7 runs, 100000000 loops each)
三、排序
-
内部方法
改变了自己本身。
>>> L = ['abc', 'ABD', 'aBe']
>>> L.sort() # Sort with mixed case
>>> L
['ABD', 'aBe', 'abc']
>>> L = ['abc', 'ABD', 'aBe']
>>> L.sort(key=str.lower) # Normalize to lowercase 忽略大小写
>>> L
['abc', 'ABD', 'aBe']
>>> L = ['abc', 'ABD', 'aBe']
>>> L.sort(key=str.lower, reverse=True) # Change sort order 反过来
>>> L
['aBe', 'ABD', 'abc']
Bisect 模块:一个有趣的python排序模块:bisect
>>> import bisect >>> data = [1,2,3,4] >>> bisect.bisect(data, 2) 2 >>> bisect.bisect_left(data, 2) 1 >>> bisect.bisect_right(data, 2) 2
-
系统方法
生成了新的列表。
>>> L = ['abc', 'ABD', 'aBe']
>>> sorted(L, key=str.lower, reverse=True) # Sorting built-in
['aBe', 'ABD', 'abc']
>>> L = ['abc', 'ABD', 'aBe']
>>> sorted([x.lower() for x in L], reverse=True) # Pretransform items: differs!
['abe', 'abd', 'abc']
Dictionaries 字典
一、初始化的几种方式
-
(1) 显式初始化
>>> D = {'spam': 2, 'ham': 1, 'eggs': 3} # 显式初始化
>>> bob1 = dict(name='Bob', job='dev', age=40) # 参数初始化 >>> bob1 {'age': 40, 'name': 'Bob', 'job': 'dev'}
-
(2) 只有key值
-----------------------------------------------------------------------
------------------------------ 数字 -----------------------------------
-----------------------------------------------------------------------
>>> D = dict.fromkeys(['a', 'b', 'c'], 0) # Initialize dict from keys >>> D {'b': 0, 'c': 0, 'a': 0}
----------------------------------------------------------------------- >>> D = {k:0 for k in ['a', 'b', 'c']} # Same, but with a comprehension >>> D {'b': 0, 'c': 0, 'a': 0}
-----------------------------------------------------------------------
------------------------------ 字符串 ----------------------------------
-----------------------------------------------------------------------
>>> D = dict.fromkeys('spam') # Other iterables, default value >>> D {'s': None, 'p': None, 'a': None, 'm': None}
----------------------------------------------------------------------- >>> D = {k: None for k in 'spam'} >>> D {'s': None, 'p': None, 'a': None, 'm': None}
-
(3) key, value 都知道
>>> bob2 = dict( zip(['name', 'job', 'age'], ['Bob', 'dev', 40]) ) # Zipping >>> bob2 {'job': 'dev', 'name': 'Bob', 'age': 40}
zip操作
>>> list( zip(['a', 'b', 'c'], [1, 2, 3]) ) # Zip together keys and values [('a', 1), ('b', 2), ('c', 3)]
>>> D = dict( zip(['a', 'b', 'c'], [1, 2, 3]) ) # Make a dict from zip result >>> D {'b': 2, 'c': 3, 'a': 1}
# 进一步,在配对的过程中可以做一些lamdb的操作
>>> D = {k: v for (k, v) in zip(['a', 'b', 'c'], [1, 2, 3])}
>>> D
{'b': 2, 'c': 3, 'a': 1}
zip的反操作
>>> a = [1,2,3] >>> b = [4,5,6] >>> c = [4,5,6,7,8]
>>> zipped = zip(a,b) # 打包为元组的列表 [(1, 4), (2, 5), (3, 6)]
>>> zip(a,c) # 元素个数与最短的列表一致 [(1, 4), (2, 5), (3, 6)]
>>> zip(*zipped) # 与 zip 相反,*zipped 可理解为解压,返回二维矩阵式 [(1, 2, 3), (4, 5, 6)]
二、插入操作
-
单元素添加
a = {‘age’: 23, ‘name’: ‘lala} a[school] = ‘nanhaizhongxue’ print a >>> {‘age’: 23, ‘name’: ‘lala’, ‘school’: ‘nanhaizhongxue’}
-
字典合并
>>> D
{'eggs': 3, 'spam': 2, 'ham': 1}
>>> D2 = {'toast':4, 'muffin':5} # Lots of delicious scrambled order here
>>> D.update(D2)
>>> D
{'eggs': 3, 'muffin': 5, 'toast': 4, 'spam': 2, 'ham': 1}
三、遍历键值
-
间接遍历
单独输出所有的key;单独输出所有的value;单独输出所有的(key, value);
print(dic.keys()) # dict_keys(['赵四', '刘能', '王木生']) 像列表. 山寨列表 for k in dic.keys(): # 拿到的是字典中的每一个key print(k)
print(dic.values()) # dict_values(['刘晓光', '王晓利', '范伟']) 所有的value的一个数据集 for v in dic.values(): print(v)
print(dic.items()) # 所有的键值对 dict_items([('赵四', '刘晓光'), ('刘能', '王晓利'), ('王木生', '范伟')]) for k, v in dic.items(): # 遍历字典最简单的方案 print(item) # ('赵四', '刘晓光') k, v = item # 解构 k = item[0] v = item[1] print(k, v)
-
直接遍历
默认的是直接遍历key值。
dic = {"赵四":"刘晓光", "刘能":"王晓利", "王木生":"范伟"} # 直接for循环 for key in dic: # 直接循环字典拿到的是key, 有key直接拿value print(key) print(dic[key])
获取 value 的第二种方式
#!/usr/bin/python
dict = {'Name': 'Zara', 'Age': 27}
print "Value : %s" % dict.get('Age')
print "Value : %s" % dict.get('Sex', "Never")
四、排序
-
排序key值
先取出key值,再排序。
>>> Ks = list( D.keys() ) # Unordered keys list >>> Ks # A list in 2.X, "view" in 3.X: use list() ['a', 'c', 'b']
>>> Ks.sort() # Sorted keys list >>> Ks ['a', 'b', 'c']
>>> for key in Ks: # Iterate though sorted keys print(key, '=>', D[key]) # <== press Enter twice here (3.X print) a => 1 b => 2 c => 3
-
排序value值
默认是排序value值。
# 键 >>> list( D.items() ) [('eggs', 3), ('spam', 2), ('ham', 1)]
五、判断 key 是否存在
-
有么?
第一种方法:使用自带函数实现:
在 python 的字典的属性方法里面有一个 has_key() 方法:
#生成一个字典 d = {'name':Tom, 'age':10, 'Tel':110}
#打印返回值 print d.has_key('name') #结果返回True
-
在里面么?
第二种方法:使用 in 方法: 【推荐,更快】
#生成一个字典
d = {'name':'Tom', 'age':10, 'Tel':110}
#打印返回值,其中d.keys()是列出字典所有的key,以下两个结果一样,返回True
print(‘name’ in d.keys())
print('name' in d)
#一个例子:多维数据使用 dict.
>>> if (2, 3, 6) in Matrix: # Check for key before fetch
... print(Matrix[(2, 3, 6)]) # See Chapters 10 and 12 for if/else
... else:
... print(0)
...
0
除了使用 in 还可以使用 not in。
-
异常了么?
第三种方法:try...except方法:
如果不在,造成错误,大不了走except路线。
>>> try:
... print(Matrix[(2, 3, 6)]) # Try to index
... except KeyError: # Catch and recover
... print(0) # See Chapters 10 and 34 for try/except
...
0
稀疏矩阵
妙,表示稀疏矩阵:Using dictionaries for sparse data structures: Tuple keys
>>> Matrix = {} >>> Matrix[(2, 3, 4)] = 88 >>> Matrix[(7, 8, 9)] = 99 >>> >>> X = 2; Y = 3; Z = 4 # ; separates statements: see Chapter 10 这里更灵活! >>> Matrix[(X, Y, Z)] 88
Tuples 元组
一、不变性 immutability
携带一些比较类似list的性质,但功能较少。
>>> T.index(4) # Tuple methods: 4 appears at offset 3 3 >>> T.count(4) # 4 appears once 1
Why Lists and Tuples?:
Frankly, tuples are not generally used as often as lists in practice, but their immutability is the whole point.
If you pass a collection of objects around your program as a list, it can be changed anywhere; if you use a tuple, it cannot.
不变性,可能就是其存在的意义。
二、tuple歧义
小括号中一个元素
括号()
既可以表示tuple,又可以表示数学公式中的小括号。
只有一个元素的tuple必须跟着“逗号”
>>> t = (1)
>>> t
1
>>> t = (1,)
>>> t
(1,)
“相对” 不变性
tuple的第一级元素不能变,但控制不了元素内部的“可变”。
>>> t = ('a', 'b', ['A', 'B'])
>>> t[2][0] = 'X'
>>> t[2][1] = 'Y'
>>> t
('a', 'b', ['X', 'Y'])
Sets 集合
一、常见集合运算
拆分字符串
>>> X = set('spam') # Make a set out of a sequence in 2.X and 3.X >>> Y = {'h', 'a', 'm'} # Make a set with set literals in 3.X and 2.7
>>> X, Y # A tuple of two sets without parentheses ({'m', 'a', 'p', 's'}, {'m', 'a', 'h'})
集合逻辑运算
>>> X & Y # Intersection {'m', 'a'}
>>> X | Y # Union {'m', 'h', 'a', 'p', 's'}
>>> X - Y # Difference {'p', 's'}
>>> X > Y # Superset False
二、集合遍历
注意,这里是大括号。
>>> {n ** 2 for n in [1, 2, 3, 4]} # Set comprehensions in 3.X and 2.7 {16, 1, 4, 9}
三、与List的相互转化
Goto: Python列表、元组、集合、字典的区别和相互转换
End.