[Python] 03 - Lists, Dictionaries, Tuples, Set

List 列表 


一、基础知识 

  • 基础功能

初始化方法

特例:初始化字符串

>>> sList = list("hello")
>>> sList
['h', 'e', 'l', 'l', 'o']

 

功能函数

append   # 添加一个元素
pop      # 拿走一个元素
sort
reverse
In [11]: dir(list)
Out[11]: 
['__add__',
 '__class__',
 '__contains__',
 '__delattr__',
 '__delitem__',
 '__dir__',
 '__doc__',
 '__eq__',
 '__format__',
 '__ge__',
 '__getattribute__',
 '__getitem__',
 '__gt__',
 '__hash__',
 '__iadd__',
 '__imul__',
 '__init__',
 '__iter__',
 '__le__',
 '__len__',
 '__lt__',
 '__mul__',
 '__ne__',
 '__new__',
 '__reduce__',
 '__reduce_ex__',
 '__repr__',
 '__reversed__',
 '__rmul__',
 '__setattr__',
 '__setitem__',
 '__sizeof__',
 '__str__',
 '__subclasshook__',
 'append',
 'clear',
 'copy',
 'count',
 'extend',
 'index',
 'insert',
 'pop',
 'remove',
 'reverse',
 'sort']
dir(list)

 

  • 强引用 & 弱应用

弱引用

与apend的区别是:extend只作用于List。

>>> L = [1, 2]
>>> M = L
>>> L += [3, 4]    # 还是原来的对象,只是变大了
>>> L, M           # M sees the in-place change too!
([1, 2, 3, 4], [1, 2, 3, 4])

 

强引用 --> 复制

>>> L = [1, 2]
>>> M = L          # L and M reference the same object
>>> L = L + [3, 4] # 其实是新对象
>>> L, M           # Changes L but not M
([1, 2, 3, 4], [1, 2])

 

强引用 --> [ : ] 代表了 ‘拷贝’

第一个变了;第二个没变,以为 [:] 代表了‘拷贝’ 的意思。

 

通过地址查看

 

 

二、元素遍历 

  • 直接遍历

For 循环

[ 某行第一个元素 for 某行 in 矩阵 ]

实例1:提取其中一列column.

>>> col2 = [row[1] for row in M]   # Collect the items in column 2
>>> col2 [2, 5, 8] >>> M   # The matrix is unchanged [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

>>> [row[1] for row in M if row[1] % 2 == 0]   # Filter out odd items [2, 8]

实例2:有点pipeline的意思

>>> [[x ** 2, x ** 3] for x in range(4)] # Multiple values, "if" filters
[[0, 0], [1, 1], [4, 8], [9, 27]]
>>> [[x, x / 2, x * 2] for x in range(−6, 7, 2) if x > 0] [[2, 1, 4], [4, 2, 8], [6, 3, 12]]

while ... else

while test: # Loop test
    statements # Loop body
else: # Optional else
    statements # Run if didn't exit loop with break

这个else是个很好的东西,表示循环走到头了;有益代码阅读。

for ... else

for target in object: # Assign object items to target
  statements # Repeated loop body: use target
else: # Optional else part
  statements # If we didn't hit a 'break'

 

lambda 迭代遍历

map() 会根据提供的函数对"指定序列"做映射。

<返回list类型> = map(function, iterable, ...)
# 1. 独立函数
>>>def square(x) : # 计算平方数 ... return x ** 2 ... >>> map(square, [1,2,3,4,5]) # 计算列表和:1+2+3+4+5 [1, 4, 9, 16, 25]


----------------------------------------------------------------
# 2. 匿名函数 >>> map(lambda x: x ** 2, [1, 2, 3, 4, 5]) # 使用 lambda 匿名函数 [1, 4, 9, 16, 25]

---------------------------------------------------------------- # 3. 提供了两个列表,对相同位置的列表数据进行相加 >>> map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10]) [3, 7, 11, 15, 19]  

不同的类型是否Iterable的判断.

>>> from collections import Iterable

>>> isinstance('abc', Iterable) # str是否可迭代
True

>>> isinstance([1,2,3], Iterable) # list是否可迭代
True

>>> isinstance(123, Iterable) # 整数是否可迭代
False

 

map & reduce

(1) map

>>> def f(x):
...     return x * x
...
>>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> list(r)
[1, 4, 9, 16, 25, 36, 49, 64, 81]

(2) reduce 

>>> from functools import reduce
>>> def fn(x, y):
...     return x * 10 + y
...
>>> reduce(fn, [1, 3, 5, 7, 9])
13579

(3) map + reduce

典型的例子:第一步map,解析字符串数字;第二步reduce,求数字的和.

from functools import reduce

DIGITS = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}

def str2int(s):
    def fn(x, y):
        return x * 10 + y
    def char2num(s):
        return DIGITS[s]
    return reduce(fn, map(char2num, s))

 

  • Iterable 遍历

Goto: [Advanced Python] 14 - "Generator": calculating prime

next

In [13]: M = [[1, 2, 3], # A 3 × 3 matrix, as nested lists
    ...: 
    ...: [4, 5, 6], # Code can span lines if bracketed
    ...: 
    ...: [7, 8, 9]]

In [
14]: G = (sum(row) for row in M)   # <----这里使用元组,返回的是iterable的结构 In [16]: next(G)  # 输出一行 Out[16]: 6 In [17]: next(G)  # 再输出一行 Out[17]: 15 In [18]: next(G)  # 再输出一行 Out[18]: 24 

列表(方括号),集合(大括号),字典(大括号),元组(圆括号) 效果对比,只有元组是Iterable的.

 

generator

yield x: Generator function send protocol

From: https://www.jianshu.com/p/d09778f4e055

带有 yield 的函数不再是一个普通函数,而是一个生成器 generator,可用于迭代,工作原理同next()。

类似 return 的关键字。

send(msg)与next()的区别在于send可以传递参数给yield表达式,这时传递的参数会作为yield表达式的值,而yield的参数是返回给调用者的值。

其实就是让一个函数分步执行:

>>> def get_0_1_2():
...   yield 0
...   yield 1
...   yield 2
...
>>> get_0_1_2
<function get_0_1_2 at 0x00B2CB70>
 
  generator = get_0_1_2()    # 绑定了函数后就开始执行
 
>>> generator.next()
0
>>> generator.next()
1
>>> generator.next()
2 

api有了稍许变化!【这个貌似好用】

generator = get_0_1_2()  # 必须这么绑定一下,直接用函数名不行

In [83]: next(generator) Out[83]: 0 In [84]: next(generator) Out[84]: 1 In [85]: next(generator) Out[85]: 2 In [86]: next(generator)
Error.

 

迭代越界 StopIteration

>>> from itertools import chain
>>> it = chain([1,2,3],[4,5,6],[7,8,9])
>>> while True:
...     try:
...         elem = it.next()
...     except StopIteration:
...         print "Last element was:", elem, "... do something special now"
...         break
...     print "Got element:", elem
...     
... 
Got element: 1
Got element: 2
Got element: 3
Got element: 4
Got element: 5
Got element: 6
Got element: 7
Got element: 8
Got element: 9
Last element was: 9 ... do something special now
>>>  

 

  • 嵌套遍历

"二级列表"处理

一来效率高;二来支持多列表。注意,解开”嵌套“的顺序。

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
flat = [x for row in matrix for x in row]
print(flat)

 

"多条件"设置

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
filtered = [[x for x in row if x % 3 == 0] for row in matrix if sum(row) >= 10]
print(filtered)
>>> [[6], [9]]
 

 

  • 高性能测量

查看内存占用

import sys
sys.getsizeof([1,2,3])

 

耗时对比

In [1]: %timeit l = [1,2,3,4,5,6,7,8,9,0]                                       
58.1 ns ± 1.42 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)

In [2]: %timeit l = (1,2,3,4,5,6,7,8,9,0)                                       
9.78 ns ± 0.114 ns per loop (mean ± std. dev. of 7 runs, 100000000 loops each)

 

 

三、排序

  • 内部方法

改变了自己本身。

>>> L = ['abc', 'ABD', 'aBe']
>>> L.sort()                            # Sort with mixed case
>>> L
['ABD', 'aBe', 'abc']
>>> L = ['abc', 'ABD', 'aBe'] >>> L.sort(key=str.lower) # Normalize to lowercase 忽略大小写 >>> L ['abc', 'ABD', 'aBe'] >>> L = ['abc', 'ABD', 'aBe'] >>> L.sort(key=str.lower, reverse=True) # Change sort order 反过来 >>> L ['aBe', 'ABD', 'abc']

 Bisect 模块:一个有趣的python排序模块:bisect

>>> import bisect
>>> data = [1,2,3,4]
>>> bisect.bisect(data, 2)
2
>>> bisect.bisect_left(data, 2)
1
>>> bisect.bisect_right(data, 2)
2

 

 

  • 系统方法

生成了新的列表。

>>> L = ['abc', 'ABD', 'aBe']
>>> sorted(L, key=str.lower, reverse=True) # Sorting built-in
['aBe', 'ABD', 'abc']
>>> L = ['abc', 'ABD', 'aBe'] >>> sorted([x.lower() for x in L], reverse=True) # Pretransform items: differs! ['abe', 'abd', 'abc']

 

 

 

Dictionaries 字典


一、初始化的几种方式

  • (1) 显式初始化

>>> D = {'spam': 2, 'ham': 1, 'eggs': 3}         # 显式初始化
>>> bob1 = dict(name='Bob', job='dev', age=40)     # 参数初始化
>>> bob1
{'age': 40, 'name': 'Bob', 'job': 'dev'}

 

  • (2) 只有key值

-----------------------------------------------------------------------
------------------------------ 数字 -----------------------------------
-----------------------------------------------------------------------

>>> D = dict.fromkeys(['a', 'b', 'c'], 0) # Initialize dict from keys >>> D {'b': 0, 'c': 0, 'a': 0}

-----------------------------------------------------------------------
>>> D = {k:0 for k in ['a', 'b', 'c']}   # Same, but with a comprehension >>> D {'b': 0, 'c': 0, 'a': 0}


-----------------------------------------------------------------------
------------------------------ 字符串 ----------------------------------
-----------------------------------------------------------------------

>>> D = dict.fromkeys('spam') # Other iterables, default value >>> D {'s': None, 'p': None, 'a': None, 'm': None}

-----------------------------------------------------------------------
>>> D = {k: None for k in 'spam'} >>> D {'s': None, 'p': None, 'a': None, 'm': None}

 

  • (3) key, value 都知道

>>> bob2 = dict( zip(['name', 'job', 'age'], ['Bob', 'dev', 40]) ) # Zipping
>>> bob2
{'job': 'dev', 'name': 'Bob', 'age': 40}

zip操作

>>> list( zip(['a', 'b', 'c'], [1, 2, 3]) ) # Zip together keys and values
[('a', 1), ('b', 2), ('c', 3)]
>>> D = dict( zip(['a', 'b', 'c'], [1, 2, 3]) ) # Make a dict from zip result >>> D {'b': 2, 'c': 3, 'a': 1}

# 进一步,在配对的过程中可以做一些lamdb的操作

  >>> D = {k: v for (k, v) in zip(['a', 'b', 'c'], [1, 2, 3])}
  >>> D
  {'b': 2, 'c': 3, 'a': 1}

zip的反操作

>>> a = [1,2,3]
>>> b = [4,5,6]
>>> c = [4,5,6,7,8]
>>> zipped = zip(a,b) # 打包为元组的列表 [(1, 4), (2, 5), (3, 6)]
>>> zip(a,c) # 元素个数与最短的列表一致 [(1, 4), (2, 5), (3, 6)]
>>> zip(*zipped) # 与 zip 相反,*zipped 可理解为解压,返回二维矩阵式 [(1, 2, 3), (4, 5, 6)]

 

  

二、插入操作

  • 单元素添加

a = {‘age’: 23, ‘name’: ‘lala}
a[school] = ‘nanhaizhongxue’

print a
>>> {‘age’: 23, ‘name’: ‘lala’, ‘school’: ‘nanhaizhongxue’} 

 

  • 字典合并

>>> D
{'eggs': 3, 'spam': 2, 'ham': 1}
>>> D2 = {'toast':4, 'muffin':5} # Lots of delicious scrambled order here
>>> D.update(D2) >>> D {'eggs': 3, 'muffin': 5, 'toast': 4, 'spam': 2, 'ham': 1}

  

 

三、遍历键值

  • 间接遍历

单独输出所有的key;单独输出所有的value;单独输出所有的(key, value);

print(dic.keys()) # dict_keys(['赵四', '刘能', '王木生']) 像列表. 山寨列表
for k in dic.keys(): # 拿到的是字典中的每一个key
    print(k)
 
print(dic.values()) # dict_values(['刘晓光', '王晓利', '范伟']) 所有的value的一个数据集 for v in dic.values(): print(v)
print(dic.items()) # 所有的键值对 dict_items([('赵四', '刘晓光'), ('刘能', '王晓利'), ('王木生', '范伟')]) for k, v in dic.items(): # 遍历字典最简单的方案 print(item) # ('赵四', '刘晓光') k, v = item # 解构 k = item[0] v = item[1] print(k, v)

 

  • 直接遍历

默认的是直接遍历key值。

dic = {"赵四":"刘晓光", "刘能":"王晓利", "王木生":"范伟"}
# 直接for循环
for key in dic: # 直接循环字典拿到的是key, 有key直接拿value
    print(key)
    print(dic[key])

 

获取 value 的第二种方式

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 27}

print "Value : %s" %  dict.get('Age')
print "Value : %s" %  dict.get('Sex', "Never")

 

 

四、排序

  • 排序key值

先取出key值,再排序。

>>> Ks = list( D.keys() ) # Unordered keys list
>>> Ks # A list in 2.X, "view" in 3.X: use list()
['a', 'c', 'b']
>>> Ks.sort() # Sorted keys list >>> Ks ['a', 'b', 'c']
>>> for key in Ks: # Iterate though sorted keys print(key, '=>', D[key]) # <== press Enter twice here (3.X print) a => 1 b => 2 c => 3

 

  • 排序value值

默认是排序value值。

# 键
>>> list( D.items() )
[('eggs', 3), ('spam', 2), ('ham', 1)]

 

 

五、判断 key 是否存在

  • 有么?

第一种方法:使用自带函数实现:

在 python 的字典的属性方法里面有一个 has_key() 方法:

#生成一个字典
d = {'name':Tom, 'age':10, 'Tel':110}
#打印返回值 print d.has_key('name') #结果返回True

 

  • 在里面么?

第二种方法:使用 in 方法: 【推荐,更快】 

#生成一个字典
d = {'name':'Tom', 'age':10, 'Tel':110}

#打印返回值,其中d.keys()是列出字典所有的key,以下两个结果一样,返回True
print(‘name’ in d.keys())
print('name' in d)

#一个例子:多维数据使用 dict.
>>> if (2, 3, 6) in Matrix: # Check for key before fetch
...   print(Matrix[(2, 3, 6)]) # See Chapters 10 and 12 for if/else
... else:
...   print(0)
...
0

除了使用 in 还可以使用 not in。

 

  • 异常了么?

第三种方法:try...except方法:

如果不在,造成错误,大不了走except路线。

>>> try:
...   print(Matrix[(2, 3, 6)]) # Try to index
... except KeyError: # Catch and recover
...   print(0) # See Chapters 10 and 34 for try/except
...
0

稀疏矩阵

妙,表示稀疏矩阵:Using dictionaries for sparse data structures: Tuple keys

>>> Matrix = {}
>>> Matrix[(2, 3, 4)] = 88
>>> Matrix[(7, 8, 9)] = 99
>>>
>>> X = 2; Y = 3; Z = 4 # ; separates statements: see Chapter 10 这里更灵活!
>>> Matrix[(X, Y, Z)]
88

 

 

  

 

Tuples 元组


一、不变性 immutability

携带一些比较类似list的性质,但功能较少。

>>> T.index(4) # Tuple methods: 4 appears at offset 3
3
>>> T.count(4) # 4 appears once
1

Why Lists and Tuples?

Frankly, tuples are not generally used as often as lists in practice, but their immutability is the whole point.

If you pass a collection of objects around your program as a list, it can be changed anywhere; if you use a tuple, it cannot.

不变性,可能就是其存在的意义。

 

 

二、tuple歧义

小括号中一个元素

括号()既可以表示tuple,又可以表示数学公式中的小括号。

只有一个元素的tuple必须跟着“逗号”

>>> t = (1)
>>> t
1

>>> t = (1,)
>>> t
(1,)

 

“相对” 不变性

tuple的第一级元素不能变,但控制不了元素内部的“可变”。

>>> t = ('a', 'b', ['A', 'B'])
>>> t[2][0] = 'X'
>>> t[2][1] = 'Y'
>>> t
('a', 'b', ['X', 'Y'])

 

 

 

Sets 集合


一、常见集合运算

拆分字符串

>>> X = set('spam')         # Make a set out of a sequence in 2.X and 3.X
>>> Y = {'h', 'a', 'm'}     # Make a set with set literals in 3.X and 2.7
>>> X, Y # A tuple of two sets without parentheses ({'m', 'a', 'p', 's'}, {'m', 'a', 'h'})

 

集合逻辑运算

>>> X & Y   # Intersection
{'m', 'a'}
>>> X | Y # Union {'m', 'h', 'a', 'p', 's'}
>>> X - Y # Difference {'p', 's'}
>>> X > Y # Superset False

 

 

二、集合遍历

注意,这里是大括号。

>>> {n ** 2 for n in [1, 2, 3, 4]} # Set comprehensions in 3.X and 2.7
{16, 1, 4, 9}

 

 

三、与List的相互转化

Goto: Python列表、元组、集合、字典的区别和相互转换

 

End.

posted @ 2018-01-20 21:35  郝壹贰叁  阅读(275)  评论(0编辑  收藏  举报