[Bayesian] “我是bayesian我怕谁”系列 - Boltzmann Distribution
使用Boltzmann distribution还是Gibbs distribution作为题目纠结了一阵子,选择前者可能只是因为听起来“高大上”一些。本章将会聊一些关于信息、能量这方面的东西,体会“交叉学科”的魅力。
In statistical mechanics and mathematics, a Boltzmann distribution (also called Gibbs distribution) is a probability distribution, probability measure, or frequency distribution of particles in a system over various possible states.
Hi 菜鸡,
神经网络的Boltzmann Machine;
期望传播中提及的Ising model;
强化学习中涉及的训练收敛问题;
够了么?问问自己有没有必要了解?
本系列文章乃自娱自乐,防止衰老;只“雪中送炭”,不提供”全套服务“。
-
Softmax与分子运动学
一个用于描述稳态系统的内部粒子状态的分布:
任何(宏观)物理系统的温度都是组成该系统的分子和原子的运动的结果。
对于大量粒子来说,处于一个特定的速度范围的粒子所占的比例却几乎不变,如果系统处于或接近处于平衡。---- 分布的期望是”稳定的“,是不是这么个感觉
麦克斯韦-玻尔兹曼分布具体说明了这个比例。
既然是个分布,概率密度函数的样子是:
百度百科:click me
写到这里,内心是湿润的,远古时期的物理奥赛底子竟然到今天还发挥着余热,啊哈哈哈哈哈……
Ni是单粒子微观状态i中的平均粒子数,
N是系统中的粒子总数,
Ei是microstate i的能量,
T是系统的平衡温度,
k是波尔兹曼常数。
再瞧:Softmax回归
可能你只是看到了”e族函数处处可导“的性质,想到了”归一化“这样的概念,但在另一个层次,有人可能会这样理解:
“神经网络Softmax的公式形式是分子运动学的热能公式的变种,output对应了能量输出,分类的物理意义对应的就是不同能量层级的分子的个数比,也就是成为某类的概率比。如此看来,NN的各个权值的意义,原来就是能量值。NN的收敛,就是能量的分配,系统entropy最大的过程。”
这,又是一个如同pca章节讲述的故事,是否点醒了菜鸡。
-
Cross Entropy与KL Divergence
Cross Entropy是求loss的一种方式,对于菜鸡起初难以理解,毕竟另一个“最小二乘”的loss计算方式理解起来会简单的多。
表面美,不一定内在美。
Cross Entropy的依据显然是信息论。
(1) X=x时的Entropy :
(2) 变量X的Entropy (the average amount of information) :
形式好看了些。
(3) 举个栗子
0-1离散分布,0的概率是θ,1的概率是(1 − θ),那么:
H(X) = −θ log θ − (1 − θ) log(1 − θ)
可见,当θ=0.5时,这样的变量X才拥有最大H。
基础概念过后,有请Cross Entropy的姐姐Relative Entropy:
原来Relative Entropy就是Kullback-Leibler (KL) divergence。
举个栗子:两个参数不同的0-1分布的度量,如下:
(4) 那么,Cross Entropy又是什么?
可以看出,交叉熵与相对熵仅相差了H(p)
当p已知时,可以把H(p)看做一个常数,此时交叉熵与KL距离在行为上是等价的,都反映了分布p,q的相似程度。
也就是说,收敛的过程就是逐渐接近ground truth分布的过程。
-
Entropy与Mutual Information
From: http://www.ece.tufts.edu/ee/194NIT/lect01.pdf
The mutual information between two discreet random variables X, Y jointly distributed according to p(x, y) is given by :
表示两个变量之间的依赖关系。
知道这个东西做什么?一点浅显的见解:能量是一种宏观的体现,信息往往也是如此,如何度量是个问题,这至少给你提供了一套度量方法。
-
Hopfield Nets与非线性动力学
主要是看中了其中所涉及的能量公式,一起来个赏析。
信息存储的原理、例子见此链接:https://wenku.baidu.com/view/ef6e6fbec77da26925c5b0af.html
有点马尔科夫迭代收敛到稳态的感觉。
网络的稳定性度量。
为何将能量函数定义为如此形式?如下解答,一种“仿生学”。
-
Boltzmann Machine与模拟退火
Ref:最通俗的方法解释退火算法
这里有一个Bolzmann常数。
能量的变化作为什么角色?
可见,求的是:Oi = 1的概率,也就是Pa的概率。
Therefore, if all other components are fixed, the probability of xi taking the value 1 or 0 must be:
In other words, there is some probability of moving to a higher energy state (or remaining in a higher energy state even when a lower one is available).
可见,具备了模拟退火的feature,为了防止局部极小值,也可能以一定的概率走一奇招!这个概率就与当前的能量大小有关!
Restricted Boltzmann Machine
The aim is that the hidden units should learn some hidden features or “latent variables” which help the system to model the distribution of the inputs.
Two-layer bi-directional neural network,新的能量公式:
关于训练的具体细节,可参见:http://www.cnblogs.com/neopenx/p/4399336.html
但下图所示,训练的基本过程,Gibbs sampling --> [Bayes] Metroplis Algorithm --> Gibbs Sampling
到这里,便终于揭示出本文开头提及的一个真相:Boltzmann为何与Gibbs有了关系。
关于能量,总结套路于此:
”由能量决定概率分布,根据概率分布随机变换神经元的状态,直到收敛,整个网络达到稳定状态。“
读完此文,也希望你对神经网络有新的认识,对”交叉学科“有更全面的理解。
补充一个认识,还有一本书:
对于此书的评价多为:从信号系统的视角审视神经网络,角度怪异,初学者避而远之;读罢本文,了解”交叉学科“的含义,再打开此书的目录,你是否有了亲切之感?