[Tensorflow] Cookbook - Tensorboard***
Ref: https://www.tensorflow.org/get_started/summaries_and_tensorboard
可视化对于Training的重要性,不言而喻。
-
代码示范
# -*- coding: utf-8 -*-
# Using Tensorboard
#----------------------------------
#
# We illustrate the various ways to use
# Tensorboard
import os
import io
import time
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
# Initialize a graph session
sess = tf.Session()
# Create a visualizer object
summary_writer = tf.train.SummaryWriter('tensorboard', tf.get_default_graph())
# Create tensorboard folder if not exists
if not os.path.exists('tensorboard'):
os.makedirs('tensorboard')
print('Running a slowed down linear regression. '
'Run the command: $tensorboard --logdir="tensorboard" '
' Then navigate to http://127.0.0.0:6006')
# You can also specify a port option with --port 6006
# Wait a few seconds for user to run tensorboard commands
time.sleep(3)
# Some parameters
batch_size = 50
generations = 100
# Create sample input data
x_data = np.arange(1000)/10.
true_slope = 2.
y_data = x_data * true_slope + np.random.normal(loc=0.0, scale=25, size=1000)
【构造好了ground true数据】
# Split into train/test
train_ix = np.random.choice(len(x_data), size=int(len(x_data)*0.9), replace=False)
test_ix = np.setdiff1d(np.arange(1000), train_ix) # 提取出setdiff1d不同的部分(only index)
x_data_train, y_data_train = x_data[train_ix], y_data[train_ix]
x_data_test, y_data_test = x_data[test_ix ], y_data[test_ix ]
# Declare placeholders 加载样本的容器
x_graph_input = tf.placeholder(tf.float32, [None])
y_graph_input = tf.placeholder(tf.float32, [None])
# Declare model variables
m = tf.Variable(tf.random_normal([1], dtype=tf.float32), name='Slope')
# Declare model: Input layer + weight --> value of next layer
output = tf.mul(m, x_graph_input, name='Batch_Multiplication')
# Declare loss function (L1)
residuals = output - y_graph_input # 联想到了 "深度残差网络" 何凯明,减小均值
l2_loss = tf.reduce_mean(tf.abs(residuals), name="L2_Loss")
# Declare optimization function
my_optim = tf.train.GradientDescentOptimizer(0.01) # 通过这个solver缩小loss
train_step = my_optim.minimize(l2_loss)
# Visualize a scalar
with tf.name_scope('Slope_Estimate'):
tf.scalar_summary('Slope_Estimate', tf.squeeze(m))
# Visualize a histogram (errors)
with tf.name_scope('Loss_and_Residuals'):
tf.histogram_summary('Histogram_Errors', l2_loss)
tf.histogram_summary('Histogram_Residuals', residuals)
# Declare summary merging operation
summary_op = tf.merge_all_summaries()
【op操作各种各样,所以需要有个汇总的op操作】
# Initialize Variables
init = tf.initialize_all_variables()
sess.run(init)
for i in range(generations):
batch_indices = np.random.choice(len(x_data_train), size=batch_size)
x_batch = x_data_train[batch_indices]
y_batch = y_data_train[batch_indices]
_, train_loss, summary = sess.run([train_step, l2_loss, summary_op],
feed_dict={x_graph_input: x_batch, y_graph_input: y_batch})
test_loss, test_resids = sess.run([l2_loss, residuals], feed_dict={x_graph_input: x_data_test, y_graph_input: y_data_test})
if (i+1)%10==0:
print('Generation {} of {}. Train Loss: {:.3}, Test Loss: {:.3}.'.format(i+1, generations, train_loss, test_loss))
log_writer = tf.train.SummaryWriter('tensorboard')
log_writer.add_summary(summary, i)
time.sleep(0.5)
#Create a function to save a protobuf bytes version of the graph
def gen_linear_plot(slope):
linear_prediction = x_data * slope
plt.plot(x_data, y_data, 'b.', label='data')
plt.plot(x_data, linear_prediction, 'r-', linewidth=3, label='predicted line')
plt.legend(loc='upper left')
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
return(buf)
# Add image to tensorboard (plot the linear fit!)
slope = sess.run(m)
plot_buf = gen_linear_plot(slope[0])
# Convert PNG buffer to TF image
image = tf.image.decode_png(plot_buf.getvalue(), channels=4)
# Add the batch dimension
image = tf.expand_dims(image, 0)
# Add image summary
image_summary_op = tf.image_summary("Linear Plot", image)
image_summary = sess.run(image_summary_op)
log_writer.add_summary(image_summary, i)
log_writer.close()
-
查看网络结构
-
实时跟踪权重
Ref: http://www.jianshu.com/p/52e773d47338
tensorboard --logdir results --reload_interval 5
【默认的 reload_interval 是120秒,以避免在计算机上面太快统计,但是在我们的情况下,我们可以安全地加速一点】
06:Tensorflow的可视化工具Tensorboard的初步使用
小姑娘整理的不错,之后二次整理一下。