[IR] Graph Compression
Ref: [IR] Compression
Ref: [IR] Link Analysis
Planar Graph
From: http://www.csie.ntnu.edu.tw/~u91029/PlanarGraph.html#1
由於缺乏優美規律,因此談論對偶圖時,習慣忽略同構。
最特別的對偶圖例子,就是橋( bridge )與自環( loop )。
舉例來說,原圖是一棵樹,對偶圖是一個點以及一大堆自環;各種樹對應各種自環包覆方式。
Spanning Tree
From: http://www.csie.ntnu.edu.tw/~u91029/SpanningTree.html
图中提取树的方法,可参见:[Optimization] Greedy method 中最小生成树算法等相关内容。
以下探讨如何压缩Graph的策略。
Idea:
能表示在spanning tree上的连接使用-+方式记录信息。
未表示在spanning tree上的连接则补充balance bracket。
1 | 2 | 3 | 2 | 4 | 2 | 1 | 5 | 6 | 5 | 7 | 8 | 7 | 5 | |||||||||||||
- | - | + | - | + | + | - | - | + | - | - | + | + | ||||||||||||||
(( | )(( | (( | ) | ))( | ) | ) | ) | |||||||||||||||||||
12 | 234 | 56 | 6 | 547 | 7 | 3 | 1 |
最终编码形态:--((+-)((+((+-)-))(+-)-)++)
其实就是基于DFS表示tree,然后剩余的链接拿平衡括号来表达。(哄小孩儿的伎俩)
邻接矩阵,邻接链表
Each vertex associated with an (sorted / unsorted) array of adjacent vertices.
More space efficient for sparse graph.
其实就是基础的邻接表,解决稀疏信息的问题。
Web Graph representation and compression
Link: http://www.touchgraph.com/TGGoogleBrowser.html
面临的问题主要是:
• Graph is highly dynamic
– Nodes and edges are added/deleted often
– Content of existing nodes is also subject to change
– Pages and hyperlinks created on the fly
• Apart from primary connected component there are also smaller disconnected components
具有的主要特点是:
Locality: usually most of the hyperlinks are local, i.e, they point to other URLs on the same host.
The literature reports that on average 80% of the hyperlinks are local.
Consecutivity: links within same page are likely to be consecutive respecting to the lexicographic order.
Similarity: Pages on the same host tend to have many hyperlinks pointing to the same pages.
以下内容可以combined with [IR] Compression. (都具有同样类似的压缩思想)
Connectivity Server: URL compression
其实就是类似于”Front coding, 前缀冗余“的方案。
Delta Encoding of the Adjacency Lists
压缩效果:
Avg. inlink size: 34 bits --> 8.9 bits
Avg. outlink size: 24 bits --> 11.03 bits
原理:
Delta encoding is a way of storing or transmitting data in the form of differences (deltas) between sequential data rather than complete files;
more generally this is known as data differencing. Delta encoding is sometimes called delta compression,
particularly where archival histories of changes are required (e.g., in revision control software).
就是通过只记录“差别”而达到压缩的效果。
Interlist compression with representative list
ref : relative index of the representative adjacency list;
deletes: set of URL-ids to delete from the representative list; 删掉第几个data。
adds: set of URL-ids to add to the representative list. 替换为这个data。
压缩效果:
Avg. inlink size: 5.66 bits
Avg. outlink size: 5.61 bits
(WebGraph Framework)
-- 过程如下介绍
压缩效果:
Avg. inlink size: 3.08 bits
Avg. outlink size: 2.89 bits
Compressing Gaps
注意:
S1-X的值看正负,然后通过v(x)来得出Successors列的头一个值。
v(x)的值,其实:
-
- 若是奇数:x <0
- 若是偶数:x>=0
Using copy lists
能够使用copy方式,比如这里使用Node15 Outdegree11为基准做01序列(1:copy操作)
其他列以这一列为基准,只需保存没copy操作的即可。
但貌似在01序列中有太多的0出现,我们能不能针对性的做些什么?
Using copy blocks ()
Feature: copy and skip是交替进行的。
这里有几个地方比较绕,开启傻瓜式的讲解方式:
Encoding:
1. The last block is omitted; 忽略最后一个block。
2. The first copy block is 0 if the copy list starts with 0; ‘01’序列start with 0,则copy block 也start with 0。
3. The length is decremented by one for all blocks except the first one.
16, 10, 1, 01110011010
第一个0算是个标志位,第二个0才是下面的1st block的0.
1st block: 0
2nd block: 3-1=2
3rd block: 2-1=1
4th block: 2-1=1
5th block: 1-1=0
6th block: 1-1=0
7th block: 1-1=0 // The last block is omitted;
其实,最起码,copy blocks --> copy lists。
注意,copy与skip之间是否后接自己的数字,可以利用“递增”的特性来判断!
Decoding:
copy next 2+1=3 -> 15 16 17
skip next 1+1=2 -> 15 16 17
copy next 1+1=2 -> 15 16 17 22 23 24 //因为递增,”22“比“23,24”小
skip next 0+1=1 -> 15 16 17 22 23 24
copy next 0+1=1 -> 15 16 17 22 23 24 315
copy left 0+1=1 -> 15 16 17 22 23 24 315 316 317 3041
补充:
因为 “01” 序列其实不为0,那么The first copy block is not 0。
Conclusions
The compression techniques are specialized for Web Graphs.
The average link size decreases with the increase of the graph.
The average link access time increases with the increase of the graph.
The seems to have the best trade-off between avg. bit size and access time.