[Bayes] Metroplis Algorithm --> Gibbs Sampling

重要的是Gibbs的思想。

全概率分布,可以唯一地确定一个联合分布 ---- Hammersley-Clifford


 

多元高斯分布

当然,这个有点复杂,考虑个简单的,二元高斯,那么超参数就是:

二元高斯联合分布:

将其中一个作为已知常数,也就是求条件分布,正好就体现了Gibbs的特性:

 

 

#initialize constants and parameters
N <- 5000               #length of chain
burn <- 1000            #burn-in length
X <- matrix(0, N, 2)    #the chain, a bivariate sample

rho <- -.75             #correlation
mu1 <- 0
mu2 <- 2
sigma1 <- 1
sigma2 <- .5
s1 <- sqrt(1-rho^2)*sigma1
s2 <- sqrt(1-rho^2)*sigma2

###### generate the chain #####

X[1, ] <- c(mu1, mu2)            #initialize

for (i in 2:N) {
  x2 <- X[i-1, 2]
  m1 <- mu1 + rho * (x2 - mu2) * sigma1/sigma2
  X[i, 1] <- rnorm(1, m1, s1)
x1
<- X[i, 1] m2 <- mu2 + rho * (x1 - mu1) * sigma2/sigma1 X[i, 2] <- rnorm(1, m2, s2) } b <- burn + 1 x <- X[b:N, ] # compare sample statistics to parameters colMeans(x) cov(x) cor(x) plot(x, main="", cex=.5, xlab=bquote(X[1]), ylab=bquote(X[2]), ylim=range(x[,2]))

 

采样结果:

 

posted @ 2017-05-04 08:32  郝壹贰叁  阅读(397)  评论(0编辑  收藏  举报