[Bayes] MCMC (Markov Chain Monte Carlo)
不错的文章:LDA-math-MCMC 和 Gibbs Sampling
简单概率分布的模拟
Box-Muller变换原理详解
本质上来说,计算机只能生产符合均匀分布的采样。如果要生成其他分布的采样,就需要借助一些技巧性的方法,例如我们在前面的文章提到过的逆变换采样、拒绝采样以及自适应的拒绝采样等等。
涉及到 "逆变换" [Bayes] runif: Inversion Sampling
例如:U1, U2是均匀分布,可得到两个高斯分布的变量X, Y。
复杂概率分布的模拟
使用的必要性
当p(x)的形式很复杂,或者 p(x) 是个高维的分布的时候,样本的生成就可能很困难了。 譬如有如下的情况
-
-
- p(x)=p~(x)∫p~(x)dx,而 p~(x) 我们是可以计算的,但是底下的积分式无法显式计算。
- p(x,y) 是一个二维的分布函数,这个函数本身计算很困难,但是条件分布 p(x|y),p(y|x)的计算相对简单;如果 p(x) 是高维的,这种情形就更加明显。
-
此时就需要使用一些更加复杂的随机模拟的方法来生成样本。而本节中将要重点介绍的 MCMC(Markov Chain Monte Carlo) 和 Gibbs Sampling算法就是最常用的一种,这两个方法在现代贝叶斯分析中被广泛使用。要了解这两个算法,我们首先要对马氏链的平稳分布的性质有基本的认识。
马氏链及其平稳分布
平稳性:这个收敛行为主要是由概率转移矩阵P决定的。
自然的,这个收敛现象并非是我们这个马氏链独有的,而是绝大多数马氏链的共同行为,关于马氏链的收敛我们有如下漂亮的定理:
马氏链定理: 如果一个非周期马氏链具有转移概率矩阵P,且它的任何两个状态是连通的,那么 limn→∞Pnij 存在且与i无关,记 limn→∞Pnij=π(j), 我们有
- limn→∞Pn=⎡⎣⎢⎢⎢⎢⎢π(1)π(1)⋯π(1)⋯π(2)π(2)⋯π(2)⋯⋯⋯⋯⋯⋯π(j)π(j)⋯π(j)⋯⋯⋯⋯⋯⋯⎤⎦⎥⎥⎥⎥⎥
- π(j)=∑i=0∞π(i)Pij
- π 是方程 πP=π 的唯一非负解
其中, π=[π(1),π(2),⋯,π(j),⋯],∑i=0∞πi=1
π称为马氏链的平稳分布。
这个马氏链的收敛定理非常重要,所有的 MCMC(Markov Chain Monte Carlo) 方法都是以这个定理作为理论基础的。
历史由来
马氏链的平稳分布 --> Metropolis算法
对于给定的概率分布p(x),我们希望能有便捷的方式生成它对应的样本。由于马氏链能收敛到平稳分布, 于是一个很的漂亮想法是:如果我们能构造一个转移矩阵为P的马氏链,使得该马氏链的平稳分布恰好是p(x), 那么我们从任何一个初始状态x0出发沿着马氏链转移, 得到一个转移序列 x0,x1,x2,⋯xn,xn+1⋯,, 如果马氏链在第n步已经收敛了,于是我们就得到了 π(x) 的样本xn,xn+1⋯。
这个绝妙的想法在1953年被 Metropolis想到了,为了研究粒子系统的平稳性质, Metropolis 考虑了物理学中常见的波尔兹曼分布的采样问题,首次提出了基于马氏链的蒙特卡罗方法,即Metropolis算法,并在最早的计算机上编程实现。Metropolis 算法是首个普适的采样方法,并启发了一系列 MCMC方法,所以人们把它视为随机模拟技术腾飞的起点。 Metropolis的这篇论文被收录在《统计学中的重大突破》中, Metropolis算法也被遴选为二十世纪的十个最重要的算法之一。
改进变种:Metropolis-Hastings 算法
我们接下来介绍的MCMC 算法是 Metropolis 算法的一个改进变种,即常用的 Metropolis-Hastings 算法。
Gibbs Sampling
对于,由于接受率 α的存在(通常 α<1), 以上 Metropolis-Hastings 算法的效率不够高。能否找到一个转移矩阵Q使得接受率 α=1 呢?