[OpenCV] Samples 06: logistic regression
logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法。
Reference: denny的学习专栏 // 臭味相投的一个博客
- Xml保存图片的方法和读取的方式。
- Mat显示内部的多个图片。
- Mat::t() 显示矩阵内容。
本文用它来进行手写数字分类。
在opencv3.0中提供了一个xml文件,里面存放了40个样本,分别是20个数字0的手写体和20个数字1的手写体。本来每个数字的手写体是一张28*28的小图片,在xml使用1*784 的向量保存在<data>中。
这个文件的位置: \opencv\sources\samples\data\data01.xml
/*////////////////////////////////////////////////////////////////////////////////////// // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // This is a implementation of the Logistic Regression algorithm in C++ in OpenCV. // AUTHOR: // Rahul Kavi rahulkavi[at]live[at]com // // contains a subset of data from the popular Iris Dataset (taken from // "http://archive.ics.uci.edu/ml/datasets/Iris") // # You are free to use, change, or redistribute the code in any way you wish for // # non-commercial purposes, but please maintain the name of the original author. // # This code comes with no warranty of any kind. // # // # You are free to use, change, or redistribute the code in any way you wish for // # non-commercial purposes, but please maintain the name of the original author. // # This code comes with no warranty of any kind. // # Logistic Regression ALGORITHM // License Agreement // For Open Source Computer Vision Library // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage.*/ #include <iostream> #include <opencv2/core.hpp> #include <opencv2/ml.hpp> #include <opencv2/highgui.hpp> using namespace std; using namespace cv; using namespace cv::ml; /* * Jeff --> Show mutiple-photos from Mat. */ static void showImage(const Mat &data, int columns, const String &name) { // columns = 28 Mat bigImage; for(int i = 0; i < data.rows; ++i) { //rows: number of photos. // vector --> reshape --> col 28, col 28 ... // push_back: show each pic from left to right. bigImage.push_back(data.row(i).reshape(0, columns)); } imshow(name, bigImage.t()); } static float calculateAccuracyPercent(const Mat &original, const Mat &predicted) { return 100 * (float)countNonZero(original == predicted) / predicted.rows; } int main() { const String filename = "../data/data01.xml"; cout << "**********************************************************************" << endl; cout << filename << " contains digits 0 and 1 of 20 samples each, collected on an Android device" << endl; cout << "Each of the collected images are of size 28 x 28 re-arranged to 1 x 784 matrix" << endl; cout << "**********************************************************************" << endl; Mat data, labels; { /* * Jeff --> Load xml. * transform to Mat. * FileStorage. */ cout << "loading the dataset..."; // Step 1. FileStorage f; if(f.open(filename, FileStorage::READ)) { // Step 2. f["datamat"] >> data; f["labelsmat"] >> labels; f.release(); } else { cerr << "file can not be opened: " << filename << endl; return 1; } // Step 3. data.convertTo(data, CV_32F); labels.convertTo(labels, CV_32F); cout << "read " << data.rows << " rows of data" << endl; } Mat data_train, data_test; Mat labels_train, labels_test; for(int i = 0; i < data.rows; i++) { // Step 4. if(i % 2 == 0) { data_train.push_back(data.row(i)); labels_train.push_back(labels.row(i)); } else { data_test.push_back(data.row(i)); labels_test.push_back(labels.row(i)); } } cout << "training/testing samples count: " << data_train.rows << "/" << data_test.rows << endl; // display sample image showImage(data_train, 28, "train data"); showImage(data_test, 28, "test data"); /**************************************************************************/ // simple case with batch gradient cout << "training..."; // Step (1), create classifier. Ptr<LogisticRegression> lr1 = LogisticRegression::create(); // Step (2), lr1->setLearningRate(0.001); lr1->setIterations(10); lr1->setRegularization(LogisticRegression::REG_L2); lr1->setTrainMethod(LogisticRegression::BATCH); lr1->setMiniBatchSize(1); // Step (3), train. //! [init] lr1->train(data_train, ROW_SAMPLE, labels_train); cout << "done!" << endl; //-------------------------------------------------------------------------- cout << "predicting..."; // Step (4), predict. Mat responses; lr1->predict(data_test, responses); cout << "done!" << endl; // Step (5), show prediction report cout << "original vs predicted:" << endl; // Jeff --> CV_32S is a signed 32bit integer value for each pixel. labels_test.convertTo(labels_test, CV_32S); cout << labels_test.t() << endl; cout << responses.t() << endl; cout << "accuracy: " << calculateAccuracyPercent(labels_test, responses) << "%" << endl; // Step (6), save the classfier const String saveFilename = "NewLR_Trained.xml"; cout << "saving the classifier to " << saveFilename << endl; lr1->save(saveFilename); /****************************** End ***************************************/ // load the classifier onto new object cout << "loading a new classifier from " << saveFilename << endl; Ptr<LogisticRegression> lr2 = StatModel::load<LogisticRegression>(saveFilename); // predict using loaded classifier cout << "predicting the dataset using the loaded classfier..."; Mat responses2; lr2->predict(data_test, responses2); cout << "done!" << endl; // calculate accuracy cout << labels_test.t() << endl; cout << responses2.t() << endl; cout << "accuracy: " << calculateAccuracyPercent(labels_test, responses2) << "%" << endl; waitKey(0); return 0; }
关于逻辑回归:http://blog.csdn.net/pakko/article/details/37878837
什么是逻辑回归?
Logistic回归与多重线性回归实际上有很多相同之处,最大的区别就在于它们的因变量不同,其他的基本都差不多。正是因为如此,这两种回归可以归于同一个家族,即广义线性模型(generalizedlinear model)。
这一家族中的模型形式基本上都差不多,不同的就是因变量不同。
- 如果是连续的,就是多重线性回归;
- 如果是二项分布,就是Logistic回归;
- 如果是Poisson分布,就是Poisson回归;
- 如果是负二项分布,就是负二项回归。
Logistic回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释。所以实际中最常用的就是二分类的Logistic回归。
Logistic回归的主要用途:
- 寻找危险因素:寻找某一疾病的危险因素等;
- 预测:根据模型,预测在不同的自变量情况下,发生某病或某种情况的概率有多大;
- 判别:实际上跟预测有些类似,也是根据模型,判断某人属于某病或属于某种情况的概率有多大,也就是看一下这个人有多大的可能性是属于某病。
Logistic回归主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率,等等。例如,想探讨胃癌发生的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群肯定有不同的体征和生活方式等。这里的因变量就是是否胃癌,即“是”或“否”,自变量就可以包括很多了,例如年龄、性别、饮食习惯、幽门螺杆菌感染等。自变量既可以是连续的,也可以是分类的。
常规步骤
Regression问题的常规步骤为:
- 寻找h函数(即hypothesis); ==> Sigmoid函数
- 构造J函数(loss函数);
- 想办法使得J函数最小并求得回归参数(θ)
详见reference博客。