[OpenCV] Samples 03: kmeans
注意Mat作为kmeans的参数的含义。
扩展:高维向量的聚类。
一、像素聚类
#include "opencv2/highgui.hpp" #include "opencv2/core.hpp" #include "opencv2/imgproc.hpp" #include <iostream> using namespace cv; using namespace std; // static void help() // { // cout << "\nThis program demonstrates kmeans clustering.\n" // "It generates an image with random points, then assigns a random number of cluster\n" // "centers and uses kmeans to move those cluster centers to their representitive location\n" // "Call\n" // "./kmeans\n" << endl; // } int main( int /*argc*/, char** /*argv*/ ) { const int MAX_CLUSTERS = 5; Scalar colorTab[] = { Scalar(0, 0, 255), Scalar(0,255,0), Scalar(255,100,100), Scalar(255,0,255), Scalar(0,255,255) }; Mat img(500, 500, CV_8UC3); RNG rng(12345); for(;;) { //Jeff --> The second parameter is non-inclusive boundary. int k, clusterCount = rng.uniform(2, MAX_CLUSTERS+1); int i, sampleCount = rng.uniform(2, 1001); // int i, sampleCount = 10; Mat points(sampleCount, 1, CV_32FC2), labels;
//一般来说,没有必要。sampleCount都远大于ClusterCount。 // clusterCount = MIN(clusterCount, sampleCount); Mat centers; /* Jeff --> generate random sample from multigaussian distribution 以某一个中心点,二维高斯分布分配点;主要是一个数学技巧。*/ for( k = 0; k < clusterCount; k++ ) { Point center; center.x = rng.uniform(0, img.cols); center.y = rng.uniform(0, img.rows); Mat pointChunk = points.rowRange(k*sampleCount/clusterCount, k == clusterCount - 1 ? sampleCount : (k+1)*sampleCount/clusterCount); rng.fill(pointChunk, RNG::NORMAL, Scalar(center.x, center.y), Scalar(img.cols*0.05, img.rows*0.05)); cout << pointChunk << endl; }
//洗牌 randShuffle(points, 1, &rng); std::cout << points << std::endl; //Jeff --> Mat is vector here, including a list of points. // labels: index of cluster for each points. kmeans(points, clusterCount, labels, TermCriteria( TermCriteria::EPS+TermCriteria::COUNT, 10, 1.0), 3, KMEANS_PP_CENTERS, centers); //Jeff --> Draw point (tiny circle) with its color on black background. img = Scalar::all(0); // Step One: show sample points. for( i = 0; i < sampleCount; i++ ) { int clusterIdx = labels.at<int>(i); Point ipt = points.at<Point2f>(i); circle( img, ipt, 2, colorTab[clusterIdx], FILLED, LINE_AA ); } // Step Two: show central points. for( i = 0; i < clusterCount; i++ ) { std::cout << centers.at<Point2f>(i) << std::endl; } imshow("clusters", img); char key = (char)waitKey(); if( key == 27 || key == 'q' || key == 'Q' ) // 'ESC' break; } return 0; }
二、图像的kmeans降维处理
g++ -std=c++11 -pthread -fpermissive main.cpp -o output `pkg-config --cflags --libs opencv` -ldl
From: http://seiya-kumada.blogspot.com/2013/03/k-means-clustering.html【非常好】
#include <opencv2/highgui.hpp> #include <opencv2/core.hpp> #include <opencv2/imgproc.hpp> #include <iostream> using namespace cv; using namespace std; void show_result(const cv::Mat& labels, const cv::Mat& centers, int height, int width) { std::cout << "===\n"; std::cout << "labels: " << labels.rows << " " << labels.cols << std::endl; std::cout << "centers: " << centers.rows << " " << centers.cols << std::endl; assert(labels.type() == CV_32SC1); assert(centers.type() == CV_32FC1); cv::Mat rgb_image(height, width, CV_8UC3); cv::MatIterator_<cv::Vec3b> rgb_first = rgb_image.begin<cv::Vec3b>(); cv::MatIterator_<cv::Vec3b> rgb_last = rgb_image.end<cv::Vec3b>(); cv::MatConstIterator_<int> label_first = labels.begin<int>(); cv::Mat centers_u8; centers.convertTo(centers_u8, CV_8UC1, 255.0); cv::Mat centers_u8c3 = centers_u8.reshape(3); while ( rgb_first != rgb_last ) { const cv::Vec3b& rgb = centers_u8c3.ptr<cv::Vec3b>(*label_first)[0]; *rgb_first = rgb; ++rgb_first; ++label_first; } cv::imshow("tmp", rgb_image); cv::imwrite("./result.jpg", rgb_image); cv::waitKey(); } int main(int argc, const char * argv[]) { cv::Mat image = cv::imread("./d1.jpg"); if ( image.empty() ) { std::cout << "unable to load an input image\n"; return 1; } std::cout << "image: " << image.rows << ", " << image.cols << std::endl; assert(image.type() == CV_8UC3); cv::imshow("image", image); cv::Mat reshaped_image = image.reshape(1, image.cols * image.rows); std::cout << "reshaped image: " << reshaped_image.rows << ", " << reshaped_image.cols << std::endl; assert(reshaped_image.type() == CV_8UC1); //check0(image, reshaped_image); cv::Mat reshaped_image32f; reshaped_image.convertTo(reshaped_image32f, CV_32FC1, 1.0 / 255.0); std::cout << "reshaped image 32f: " << reshaped_image32f.rows << ", " << reshaped_image32f.cols << std::endl; assert(reshaped_image32f.type() == CV_32FC1); cv::Mat labels; int cluster_number = 3; cv::TermCriteria criteria {cv::TermCriteria::COUNT, 100, 1}; cv::Mat centers; cv::kmeans(reshaped_image32f, cluster_number, labels, criteria, 1, cv::KMEANS_RANDOM_CENTERS, centers); show_result(labels, centers, image.rows, image.cols); return 0; }
三、ROI的kmeans支持
原文:https://blog.csdn.net/fengbingchun/article/details/79395298
double kmeans( InputArray data, int K, InputOutputArray bestLabels,
TermCriteria criteria,
int attempts, int flags, OutputArray centers = noArray() );
接口的声明在include/opencv2/core.hpp文件中,实现在modules/core/src/kmeans.cpp文件中
(1)、data:为cv::Mat类型,每行代表一个样本,即特征,即mat.cols=特征长度,mat.rows=样本数,数据类型仅支持float;
(2)、K:指定聚类时划分为几类;
(3)、bestLabels:为cv::Mat类型,是一个长度为(样本数,1)的矩阵,即mat.cols=1,mat.rows=样本数;为K-Means算法的结果输出,指定每一个样本聚类到哪一个label中;
(4)、criteria:TermCriteria类,算法进行迭代时终止的条件,可以指定最大迭代次数,也可以指定预期的精度,也可以这两种同时指定;
(5)、attempts:指定K-Means算法执行的次数,每次算法执行的结果是不一样的,选择最好的那次结果输出;
(6)、flags:初始化均值点的方法,目前支持三种:KMEANS_RANDOM_CENTERS、KMEANS_PP_CENTERS、KMEANS_USE_INITIAL_LABELS;
(7)、centers:为cv::Mat类型,输出最终的均值点,mat.cols=特征长度,mat.rols=K.
// Color dimension reduction Mat processTagByKmean(Mat3b const tag, Option option) { int K = option.knnClusterNum; // 0. Prepare arguments for kmeans. cv::Mat reshaped_tag = tag.reshape(1, tag.cols * tag.rows); cv::Mat reshaped_tag32f, labels, centers; reshaped_tag.convertTo(reshaped_tag32f, CV_32FC1, 1.0 / 255.0);
// ------------------------------------------------------------------
// 1. do kmeans cv::kmeans(reshaped_tag32f, K, labels, TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 10, 1.0), 3, KMEANS_PP_CENTERS, centers);
// ------------------------------------------------------------------
// 2. convert to rgb mat cv::Mat rgb_tag(tag.rows, tag.cols, CV_8UC3); cv::MatIterator_<cv::Vec3b> rgb_first = rgb_tag.begin<cv::Vec3b>(); cv::MatIterator_<cv::Vec3b> rgb_last = rgb_tag.end<cv::Vec3b>(); cv::MatConstIterator_<int> label_first = labels.begin<int>(); cv::Mat centers_u8; centers.convertTo(centers_u8, CV_8UC1, 255.0); cv::Mat centers_u8c3 = centers_u8.reshape(3); while (rgb_first != rgb_last) { const cv::Vec3b &rgb = centers_u8c3.ptr<cv::Vec3b>(*label_first)[0]; *rgb_first = rgb;
++rgb_first; ++label_first; } return rgb_tag; }
原文:https://blog.csdn.net/qq_22764813/article/details/52135686
如果Mat类型数据的深度和通道数不满足上面的要求,则需要使用convertTo()函数和cvtColor()函数来进行转换。
convertTo()函数负责转换数据类型不同的Mat,即可以将类似float型的Mat转换到imwrite()函数能够接受的类型。
而cvtColor()函数是负责转换不同通道的Mat,因为该函数的第4个参数就可以设置目的Mat数据的通道数(只是我们一般没有用到它,一般情况下这个函数是用来进行色彩空间转换的)。
另外也可以不用imwrite()函数来存图片数据,可以直接用通用的XML IO接口函数将数据存在XML或者YXML中。