[IR] Probabilistic Model

If user has told us some relevant and some irrelevant documents, then we can proceed to build a probabilistic classifier, such as a Naive Bayes model.

Can we use probabilities to quantify our uncertainties?


 

Ranking method: 

Rank by probability of relevance of the document w.r.t. information need.

P(relevant | document i, query)

 

 

Bayes’ Optimal Decision Rule: x is relevant(相关的iff p(R|x) > p(NR|x)      

 

C - cost of retrieval of relevant document

C’- cost of retrieval of non-relevant document

 

 

C ⋅ p(R | d) + C ′ ⋅ (1− p(R | d))  ≤  C ⋅ p(R | d′ ) + C ′ ⋅ (1− p(Rd′ )

for all d’ not yet retrieved, then d is the next document to be retrieved

 

  • How do we compute all those probabilisties?

 

  • 二值独立模型 - Binary Independence Model

 

 

(q位置没有变,odds 优势率)

 分母约去。

 

Query相关的话,文档Vecdor如此的概率是多少?需要估计。

思考:针对一个Query,某单词是否该出现在文档中呢?

 


 

假设 (重要):

pi = p ( xi = 1 | R , q );

ri = p ( xi = 1 | NR , q );

 

 (去掉xi = 0后,乘的变多了,多了x=1, q=1的部分。在前一个连乘中乘以倒数,达到平衡。)

 

两个常量:

  query能获得有效返回的概率。

  every query 与vocabulary中的each word的相关的概率。  

一个变量:

  Retrieval Status Value

 

 

So, how do we compute ci ’s from our data ?

 

 

For each term i look at this table of document counts: 

(Term与doc的关系:出现但不一定相关;相关但不一定出现,比如computer与IBM)

pi = s / (S-s)

ri = (n-s) / (N-n-S+s)

 

 

Add 1⁄2 Smoothing

  

 

结论:一篇新文档出现,遂统计every Term与该doc的关系,得到Ci。

 


 

  • Okapi BM25: 一个非二值的模型 (略)

   

 

posted @ 2016-11-07 20:08  郝壹贰叁  阅读(1043)  评论(0编辑  收藏  举报