[SLAM] 02. Some basic algorithms of 3D reconstruction

链接:http://www.zhihu.com/question/29885222/answer/100043031

三维重建 3D reconstruction的一个算法思路介绍,帮助理解


首先一切建立在相机模型 x = kPX
 
  x,X分别代表图片和空间中的二维三维齐次坐标,
  k为相机内参矩阵
  P = [R | t] 空间坐标系相机坐标系的 orientation- R 和 transformation- t
 
 

1, 首先对某一场景多角度多位置得到很多初始数据,选择其中的某两个来初始化,选定其中一个为空间原点

 

2. 通过SIFT ,SURF等特征点查找匹配之后,用 8点法 和 RANSAC,多次计算两张图之间的Fundamental Matrix,选择其中最好的一个。
 
 
 

3.F-matrix 计算 Essential-matrix

 
 
 
4, 用 E-matrix 计算相机的 和 T,需要用SVD分解,因为orientation R是一个正交阵。

 
 
 
 
5, 得到两个相机之间的P矩阵后,通过对应点,用 Triangulation 计算对应点的空间坐标

 
 
 
 
6. 第三个位置的照片,直接根据已有的上步计算的点,与第三个位置图片上点的对应关系,计算P矩阵
 

 
 
 
 
7. 最后全局优化,Bundle Adjustment
 
 

 
 
 
8, Bundle Adjustment所有的艺术就是优化 hessian matrix逆矩阵。



推荐宾大Shi Jianbo教授在Coursera上的公开课 Robotics:Perception
上面所有的截图都来自他最后一次课的视频讲义截图

配合视觉圣经 Multiple View Geometry来看简直完美。Ransac, Bundle-adjustment, 2-View, Homography全部都有。一共四周,有线性代数基础(主要是SVD用来解线性方程),作业用Matlab.

第一周作业: Dolly Zoom
第二周作业: 平面摄影几何,广告牌在视频中的投影,类似2D增强现实
第三周作业: 在平面Barcode上通过sift检测特征点,通过H矩阵计算相机位置,做3D增强现实
第四周作业: 3D重建

 
 

作为补充,形成知识体系,cmu的机器人课程体系是真强!

 

QUICK GUIDE TO GRADUATE PROGRAMS

ProgramStructureDurationFocusPlacement
PhD Coursework, Qualifiers, Research, Dissertation 5-6 years Basic & Applied Research Academia, Research Lab
MSR Coursework, Research, Thesis 24 months Applied Research Research Lab
MRSD Coursework, Group Project 21 months Systems Development and Automation Industry, Applied Lab
MSCV Coursework, Group Project 16 months Vision: Recognition, Geometry Industry, Applied Lab

 

Course Navigation

16-311 Introduction to Robotics
16-384 Robot Kinematics and Dynamics
16-450 Robotics Systems Engineering
16-474 Robotics Capstone
 
16-264  Humanoids
16-350  Planning Techniques for Robots
16-362  Mobile Robot Programming Laboratory
16-385  Computer Vision
16-423  Designing Computer Vision Apps
16-720 Computer Vision or 16-722 Sensing and Sensors
16-741 Mechanics of Manipulation
16-711 Kinematics, Dynamic Systems and Control
16-811 Math Fundamentals for Robotics
 
16-831 Statistical Techniques in Robotics
16-822 Geometry Based Methods in Computer Vision
16-868 Biomechanics and Motor Control
16-865 Advanced Mobile Robot Development
16-833 Robot Localization & Mapping
 
16-650 Systems Engineering & Management for Robotic
 
16-782 Planning and Decision-making in Robotics
16-833 Robot Localization & Mapping *
16-811 Mathematical Fundamentals in Robotics *
 
16-822 Geometry Based Methods in Computer Vision *
 
16-623 Advanced Computer Vision Apps
16-823 Physics Based Methods in Vision
16-831 Statistical Techniques in Robotics *
 
16-720 Computer Vision or 16-722 Sensing and Sensors *
16-722 Sensing & Sensors
16-741 Mechanics of Manipulation *
16-711 Kinematics, Dynamic Systems and Control *
16-811 Mathematical Fundamentals in Robotics *
 
16-745 Dynamic Optimization
16-761 Intro to Mobile Robots
16-822 Geometry Based Methods in Computer Vision *
16-824 Learning-based Methods in Vision
16-831 Statistical Techniques in Robotics *
16-843 Manipulation Algorithms
16-868 Biomechanics and Motor Control *
 
 
posted @ 2016-10-02 11:25  郝壹贰叁  阅读(669)  评论(0编辑  收藏  举报