[OpenCV] Image Processing - Grayscale Transform & Histogram
颜色直方图
首先,先介绍一些Hist的基本使用。
官方文档:https://docs.opencv.org/trunk/d8/dbc/tutorial_histogram_calculation.html
不错博文:利用OpenCV的calcHist绘制灰度直方图、H-S直方图、BGR直方图和自定义直方图的源码及说明
From: compare histograms of grayscale images in opencv
#include <opencv2/opencv.hpp> void show_histogram(std::string const& name, cv::Mat1b const& image) { // Set histogram bins count int bins = 256; int histSize[] = {bins}; // Set ranges for histogram bins float lranges[] = {0, 256}; const float* ranges[] = {lranges}; // create matrix for histogram cv::Mat hist; int channels[] = {0}; // create matrix for histogram visualization int const hist_height = 256; cv::Mat3b hist_image = cv::Mat3b::zeros(hist_height, bins); cv::calcHist(&image, 1, channels, cv::Mat(), hist, 1, histSize, ranges, true, false); double max_val=0; minMaxLoc(hist, 0, &max_val); // visualize each bin for(int b = 0; b < bins; b++) { float const binVal = hist.at<float>(b); int const height = cvRound(binVal*hist_height/max_val); cv::line ( hist_image , cv::Point(b, hist_height-height), cv::Point(b, hist_height) , cv::Scalar::all(255) ); } cv::imshow(name, hist_image); } int main (int argc, const char* argv[]) { // here you can use cv::IMREAD_GRAYSCALE to load grayscale image, see image2 cv::Mat3b const image1 = cv::imread("C:\\workspace\\horse.png", cv::IMREAD_COLOR); cv::Mat1b image1_gray; cv::cvtColor(image1, image1_gray, cv::COLOR_BGR2GRAY); cv::imshow("image1", image1_gray); show_histogram("image1 hist", image1_gray); cv::Mat1b const image2 = cv::imread("C:\\workspace\\bunny.jpg", cv::IMREAD_GRAYSCALE); cv::imshow("image2", image2); show_histogram("image2 hist", image2); cv::waitKey(); return 0; }
Histogram equalization
偏差、增益参数
线性混合算子
非线性算子
覆盖算子
直方图均衡化
直方图的观看规则就是“左黑右白”,左边代表暗部,右边代表亮部,而中间则代表中间调。 纵向上的高度代表像素密集程度,越高,代表的就是分布在这个亮度上的像素很多。
对比度
对比度在直方图上的体现就是高光和阴影部分都有像素。
它可以很少,但是必须有,否则照片看起来就很灰了。正常照片变为低对比度后的直方图对比:
当然,也有看起来不错的低对比度图片,但它的直方图不会像上图那样极端,一般都是没有纯黑,但高光都比较足:
均衡化
(a) vs (e) 对比度有所加强。
However,可能放大暗区域的噪声。
它的基本思想是对图像中像素个数多的灰度级进行展宽,而对图像中像素个数少的灰度进行压缩,从而扩展像原取值的动态范围,提高了对比度和灰度色调的变化,使图像更加清晰。
http://blog.csdn.net/xiaowei_cqu/article/details/7606607
从分布图上的理解就是希望原始图像中y轴的值在新的分布中尽可能的展开。
变换过程是利用累积分布函数对原始分布进行映射,生成新的均匀拉伸的分布。
因此,对应每个点的操作是寻找原始分布中y值在均匀分布中的位置,如下图是理想的单纯高斯分布映射的示意图:
int main() { IplImage * image= cvLoadImage("baboon.jpg"); //显示原图及直方图 myShowHist("Source",image); IplImage* eqlimage=cvCreateImage(cvGetSize(image),image->depth,3); //分别均衡化每个信道 IplImage* redImage=cvCreateImage(cvGetSize(image),image->depth,1); IplImage* greenImage=cvCreateImage(cvGetSize(image),image->depth,1); IplImage* blueImage=cvCreateImage(cvGetSize(image),image->depth,1); cvSplit(image,blueImage,greenImage,redImage,NULL); cvEqualizeHist(redImage,redImage); cvEqualizeHist(greenImage,greenImage); cvEqualizeHist(blueImage,blueImage); //均衡化后的图像 cvMerge(blueImage,greenImage,redImage,NULL,eqlimage); myShowHist("Equalized",eqlimage); }
此函数只能处理单通道的灰色图像,对于彩色图像,我们可以把每个信道分别均衡化,再Merge为彩色图像。
算法演示:
自定义均衡化
(直方图匹配 or 直方图规定化)
//将图像与特定函数分布histv[]匹配 void myHistMatch(IplImage *img,double histv[]) { int bins = 256; int sizes[] = {bins}; CvHistogram *hist = cvCreateHist(1,sizes,CV_HIST_ARRAY); cvCalcHist(&img,hist); cvNormalizeHist(hist,1); double val_1 = 0.0; double val_2 = 0.0; uchar T[256] = {0}; double S[256] = {0}; double G[256] = {0}; for (int index = 0; index<256; ++index) { val_1 += cvQueryHistValue_1D(hist,index); val_2 += histv[index]; G[index] = val_2; S[index] = val_1; } double min_val = 0.0; int PG = 0; for ( int i = 0; i<256; ++i) { min_val = 1.0; for(int j = 0;j<256; ++j) { if( (G[j] - S[i]) < min_val && (G[j] - S[i]) >= 0) { min_val = (G[j] - S[i]); PG = j; } } T[i] = (uchar)PG; } uchar *p = NULL; for (int x = 0; x<img->height;++x) { p = (uchar*)(img->imageData + img->widthStep*x); for (int y = 0; y<img->width;++y) { p[y] = T[p[y]]; } } } // 生成高斯分布 void GenerateGaussModel(double model[]) { double m1,m2,sigma1,sigma2,A1,A2,K; m1 = 0.15; m2 = 0.75; sigma1 = 0.05; sigma2 = 0.05; A1 = 1; A2 = 0.07; K = 0.002; double c1 = A1*(1.0/(sqrt(2*CV_PI))*sigma1); double k1 = 2*sigma1*sigma1; double c2 = A2*(1.0/(sqrt(2*CV_PI))*sigma2); double k2 = 2*sigma2*sigma2; double p = 0.0,val= 0.0,z = 0.0; for (int zt = 0;zt < 256;++zt) { val = K + c1*exp(-(z-m1)*(z-m1)/k1) + c2*exp(-(z-m2)*(z-m2)/k2); model[zt] = val; p = p +val; z = z + 1.0/256; } for (int i = 0;i<256; ++i) { model[i] = model[i]/p; } }
将图像规定化为高斯分布函数。
算法演示:
计算变换函数 根据 规定的直方图 得来。但非严格单调,所以需要:
(a:s值) --> (b:z值)
发现:S0与G(Z3)竟然一致,正好匹配。
对比直方图
通过直方图匹配,可以使图像的相似度变高,但也仅仅是从颜色的角度。
int main() { IplImage * image= cvLoadImage("myhand1.jpg"); IplImage * image2= cvLoadImage("myhand2.jpg"); int hist_size=256; float range[] = {0,255}; float* ranges[]={range}; IplImage* gray_plane = cvCreateImage(cvGetSize(image),8,1); cvCvtColor(image,gray_plane,CV_BGR2GRAY); CvHistogram* gray_hist = cvCreateHist(1,&hist_size,CV_HIST_ARRAY,ranges,1); cvCalcHist(&gray_plane,gray_hist,0,0); IplImage* gray_plane2 = cvCreateImage(cvGetSize(image2),8,1); cvCvtColor(image2,gray_plane2,CV_BGR2GRAY); CvHistogram* gray_hist2 = cvCreateHist(1,&hist_size,CV_HIST_ARRAY,ranges,1); cvCalcHist(&gray_plane2,gray_hist2,0,0); //相关:CV_COMP_CORREL //卡方:CV_COMP_CHISQR //直方图相交:CV_COMP_INTERSECT //Bhattacharyya距离:CV_COMP_BHATTACHARYYA double com=cvCompareHist(gray_hist,gray_hist2,CV_COMP_BHATTACHARYYA); cout<<com<<endl; }
cvCompareHist的结果为【0,1】的浮点数,越小表示两幅图匹配度越高,0.0时两幅图精确匹配。
提供的对比方法有四种:
局部增强 (涉及到统计,大有可为)
分辨亮区域与暗区域的不同,同时只增强暗区域。