自旋锁,旋啊旋

曾经的某一天,接触了“自旋锁”,听到这个名字,脑子里出现的是“中子星”——都是在旋啊旋。

脉冲星
脉冲星概述:
脉冲星(Pulsar),又称波霎,是中子星的一种,为会周期性发射脉冲信号的星体。
人们最早认为恒星是永远不变的。而大多数恒星的变化过程是如此的漫长,人们也根本觉察不到。然而,并不是所有的恒星都那么平静。后来人们发现,有些恒星也很“调皮”,变化多端。于是,就给那些喜欢变化的恒星起了个专门的名字,叫“变星”。   脉冲星发射的射电脉冲的周期性非常有规律。一开始,人们对此很困惑,甚至曾想到这可能是外星人在向我们发电报联系。据说,第一颗脉冲星就曾被叫做“小绿人一号”。经过几位天文学家一年的努力,终于证实,脉冲星就是正在快速自转的中子星。而且,正是由于它的快速自转而发出射电脉冲。

瞎旋个啥,咋不去休眠、挂起呢?因为一些代码是大忙人,闲不得,更是停不得,就在门口自己玩死循环,急切的等待屋子里的人出来把锁给自己。

关于锁,最常使用的便是:自旋锁与信号量。先贴些实例,来点感性的认识。

-- include/linux/spinlock_types.h --

typedef struct {
    raw_spinlock_t raw_lock;
#ifdef CONFIG_GENERIC_LOCKBREAK
    unsigned int break_lock;
#endif
#ifdef CONFIG_DEBUG_SPINLOCK
    unsigned int magic, owner_cpu;
    void *owner;
#endif
#ifdef CONFIG_DEBUG_LOCK_ALLOC
    struct lockdep_map dep_map;
#endif
} spinlock_t;


typedef struct {
    volatile unsigned int lock;
} raw_spinlock_t;

以上是2.6.32中的定义。raw_spinlock_t在2.6.39中的定义:

typedef struct spinlock {
    union {
        struct raw_spinlock rlock;

#ifdef CONFIG_DEBUG_LOCK_ALLOC
# define LOCK_PADSIZE (offsetof(struct raw_spinlock, dep_map))
        struct {
            u8 __padding[LOCK_PADSIZE];
            struct lockdep_map dep_map;
        };
#endif
    };
} spinlock_t;


typedef struct raw_spinlock {
    arch_spinlock_t raw_lock;
#ifdef CONFIG_GENERIC_LOCKBREAK
    unsigned int break_lock;
#endif
#ifdef CONFIG_DEBUG_SPINLOCK
    unsigned int magic, owner_cpu;
    void *owner;
#endif
#ifdef CONFIG_DEBUG_LOCK_ALLOC
    struct lockdep_map dep_map;
#endif
} raw_spinlock_t;


typedef struct {
    volatile unsigned int lock;
} arch_spinlock_t;

大体上就是将struct raw_spinlock变肥了而已,对于我们而言,该吃吃,该睡睡,平时如何写代码,现在依旧如何写。只要volatile unsigned int lock在就好。

关于lock变量,涉及到一个“排队自旋锁“的问题,将lock分为三部分:高16位(一般未用),第16位再一分为二(next域,owner域)。
简单的说,申请自旋锁,next++;释放自旋锁,owner++;
if (next<未增值前> == owner)
     能申请自旋锁
else
     不能申请自旋锁

spinlock_t lock = SPIN_LOCK_UNLOCKED;

int __init my_init(void) 
{   
    /*输出宏SPIN_LOCK_UNLOCKED的相关信息*/
    printk("<0>SPIN_LOCK_UNLOCKED: %d\n",SPIN_LOCK_UNLOCKED.raw_lock.rlock);
    
    spin_lock_init( &lock );  //初始化自旋锁
    printk("<0>after init, lock: %d\n",lock.raw_lock.rlock);
    
    printk("<0>\n");

    spin_lock( &lock );      //第一次获取自旋锁
    printk("<0>first spin_lock, lock: %d\n",lock.raw_lock.rlock);
    spin_unlock( &lock );    //第一次释放自旋锁
    printk("<0>first spin_unlock, lock: %d\n",lock.raw_lock.rlock);

    printk("<0>\n");

    spin_lock( &lock );      //第二次获取自旋锁
    printk("<0>second spin_lock, lock: %d\n",lock.raw_lock.rlock);
    spin_unlock( &lock );    //第二次释放自旋锁
    printk("<0>second spin_unlock, lock: %d\n",lock.raw_lock.rlock);

    return 0;
}

加载结果:

Return
[ 4123.219758] SPIN_LOCK_UNLOCKED: 0
[
4123.219762] after init, lock: 0
[
4123.219764]
[
4123.219765] first spin_lock, lock: 256
[
4123.219768] first spin_unlock, lock: 257
[
4123.219770]
[
4123.219771] second spin_lock, lock: 513
[
4123.219774] second spin_unlock, lock: 514

加锁是主菜,当然还会有一些附属功能(irq)一并执行,比如下面的三个实例:

(1)

int __init spin_lock_bh_init(void)
{    
    spinlock_t lock = SPIN_LOCK_UNLOCKED;   
    
    spin_lock_init( &lock );    //初始化自旋锁
    printk("<0>in_softirq():%ld\n", in_softirq());  //输出软中断计数

    printk("<0>lock........\n");
    spin_lock_bh( &lock);       //获取自旋锁同时禁止软中断
    printk("<0>in_softirq():%ld\n", in_softirq());

    printk("<0>unlock........\n");
    spin_unlock_bh( &lock);     //释放自旋锁同时使能软中断
    printk("<0>in_softirq():%ld\n", in_softirq());

    return 0;
}
--------------------------------------
[ 5065.951735] in_softirq():0
[ 5065.951739] lock........
[ 5065.951741] in_softirq():256
[ 5065.951743] unlock........
[ 5065.951745] in_softirq():0

(2)

int __init spin_lock_irq_init(void)
{
    spinlock_t lock = SPIN_LOCK_UNLOCKED;

    spin_lock_init( &lock );    //初始化自旋锁

    printk("<0>lock........\n");
    spin_lock_irq( &lock);     //获取自旋锁同时禁止本地中断

    printk("<0>irqs_disabled():%d\n",irqs_disabled());  //查看中断是否被禁止

    printk("<0>unlock........\n");
    spin_unlock_irq( &lock);   //释放自旋锁同时使能本地中断

    printk("<0>irqs_disabled():%d\n",irqs_disabled());

    return 0;
}


---------------------------------------
[ 5747.407543] lock........
[ 5747.407548] irqs_disabled():1
[ 5747.407550] unlock........
[ 5747.407552] irqs_disabled():0

(3)

int __init spin_lock_irqsave_init(void) 
{   
    
    unsigned long flags = 0;

    spinlock_t lock = SPIN_LOCK_UNLOCKED;   
    
    spin_lock_init( &lock );    //初始化自旋锁
    
 
    printk("<0>lock........\n");
    spin_lock_irqsave( &lock, flags );	//先禁止中断,后加锁,将加锁前的中断状态保存在flag    
    
    printk("<0>irqs_disabled():%d\n",irqs_disabled());  //查看中断是否被禁止

    printk("<0>flags = 0x%lx\n",flags);  //输出标志寄存器的值

    printk("<0>unlock........\n");
    spin_unlock_irqrestore( &lock, flags );
    printk("<0>irqs_disabled():%d\n",irqs_disabled());
    
    return 0;
}


--------------------------------------
[ 6197.981793] lock........
[ 6197.981798] irqs_disabled():1
[ 6197.981800] flags = 0x200296
[ 6197.981802] unlock........
[ 6197.981804] irqs_disabled():0

再介绍一个try_lock:

            -------trylock的特点在于会有返回值。

spinlock_t lock = SPIN_LOCK_UNLOCKED;
int ret;

int my_function(void * argc)
{
    printk("<0>\nin child, the current pid is:%d\n",current->pid);      //显示子进程PID
    ret = spin_trylock( &lock );
    if( ret == 1 )
    {
        spin_unlock( &lock );
    }
    else
    {
        printk("<0>spin_trylock could't get the lock!\n");
        printk("<0>need the parent to unlock.\n\n");
    }
    return 0;
}



int __init spin_trylock_init(void)
{
    int ret0;

    printk("<0>in parent, the current pid is:%d\n",current->pid);   //显示父进程PID

    spin_lock_init( &lock );
    spin_lock( &lock );       //获取自旋锁

    ret0 = kernel_thread(my_function,NULL,CLONE_KERNEL);


    spin_unlock( &lock );    //释放自旋锁
    printk("<0>parent unlock!\n");

    return 0;
}

  

  

-----------

读写自旋锁
-----------

typedef struct {
raw_rwlock_t raw_lock;
#ifdef CONFIG_GENERIC_LOCKBREAK
unsigned
int break_lock;
#endif
#ifdef CONFIG_DEBUG_SPINLOCK
unsigned
int magic, owner_cpu;
void*owner;
#endif
#ifdef CONFIG_DEBUG_LOCK_ALLOC
struct lockdep_map dep_map;
#endif
} rwlock_t;


typedef
struct {
volatile unsigned intlock;
} raw_rwlock_t;

读写锁当然也有个lock,低24位为读者计数器(0~23)。
24位为“未锁“标志字段
其他未用。

未锁置1,表示此时锁没人拿。
未锁置0,其他也为0,表示写者掌控锁。
未锁置0,低24位有值,表示读者掌控锁,读者的个数表示有点特别,就是:
一个读者,则:0x00ffffff
两个读者,则:0x00fffffe

以此列推,大伙儿都看得出来。

最后来个实例,帮助理解:

rwlock_t rwlock = RW_LOCK_UNLOCKED;

int __init write_trylock_init(void) 
{
    int ret;
    rwlock_init( &rwlock );     //读写自旋锁初始化
    read_lock( &rwlock );       //读者申请得到读写锁rwlock
    /* 输出读写自旋锁lock字段信息*/
    printk("<0>after read_lock,lock: 0x%x\n",rwlock.raw_lock.lock);
    
    printk("<0>\n");
    ret = write_trylock( &rwlock );  //写者试图获得自旋锁
    if( ret == 1 ) 
    {   
        printk("<0>after write_trylock, lock: 0x%x\n",rwlock.raw_lock.lock);
        write_unlock( &rwlock );
        printk("<0>after write_unlock, lock: 0x%x\n",rwlock.raw_lock.lock);
    }   
    else
    {   
        printk("<0>write_trylock could't get the lock!\n");
    }   
    
    printk("<0>\n");
    read_unlock( &rwlock );    //读者释放读写锁rwlock
    printk("<0>after read_unlock,lock: 0x%x\n",rwlock.raw_lock.lock);

    return 0;
}

加载结果:

[ 9106.498749] after read_lock,lock: 0xffffff
[ 9106.498753] 
[ 9106.498755] write_trylock could't get the lock!
[ 9106.498757] 
[ 9106.498759] after read_unlock,lock: 0x1000000

当然,kernel里的锁还有许多,顺序锁啊,信号量啊什么。但基本都是那个样子。再说一个completioin,这个东西初次看到有点唬人,先来个实例:

struct completion {
    unsigned int done;
    wait_queue_head_t  wait;
};

--------------------------------

static struct completion comple;

int my_function(void * argc)
{
    wait_queue_head_t head;
    wait_queue_t data;
    printk("<0>in the kernel thread function!\n");

    init_waitqueue_head(&head);
    init_waitqueue_entry(&data,current);
    add_wait_queue(&head,&data); 

    sleep_on_timeout(&head,10);

    printk("<0>the current pid is:%d\n",current->pid);
    printk("<0>the state of the parent is:%ld\n",current->real_parent->state); 
    complete(&comple);     //这里若不执行此函数,之前的wait_for_completioin便会一直堵死在那里
    printk("<0>out the kernel thread function\n");
    return 0;
}   
    

static int __init wait_for_completion_init(void)
{   
    int result;
    wait_queue_t data;
    printk("<0>into wait_for_completion_init.\n");              
    result=kernel_thread(my_function, NULL, CLONE_KERNEL);
    
    struct pid * kpid=find_get_pid(result);
    struct task_struct * task=pid_task(kpid,PIDTYPE_PID);

    init_completion(&comple);    //初始化好变量,记得变量里还包含个:wait_queue_head_t

    init_waitqueue_entry(&data, task);
    __add_wait_queue_tail(&(comple.wait), &data);    //加入这个队列头

    wait_for_completion(&comple);    //等待,起到同步作用

    printk("<0>the result of the kernel_thread is :%d\n",result);
    printk("<0>the current pid is:%d\n",current->pid);
    printk("<0>out wait_for_completion_init.\n");
    return 0;
} 

completion是同步用的,和等待队列放在一起,自然就露出了她的本来面目~

好了,就先说这么些。。。

posted @ 2011-07-01 12:55  郝壹贰叁  阅读(2916)  评论(0编辑  收藏  举报