Python 数据科学系列 の Numpy、Series 和 DataFrame介绍

本課主題

  • Numpy 的介绍和操作实战
  • Series 的介绍和操作实战
  • DataFrame 的介绍和操作实战

 

Numpy 的介绍和操作实战

numpy 是 Python 在数据计算领域里很常用的模块 

import numpy as np
np.array([11,22,33]) #接受一个列表数据
  1. 创建 numpy array
    >>> import numpy as np
    >>> mylist = [1,2,3]
    >>> x = np.array(mylist)
    >>> x
    array([1, 2, 3])
    >>> y = np.array([4,5,6])
    >>> y
    array([4, 5, 6])
    >>> m = np.array([[7,8,9],[10,11,12]])
    >>> m
    array([[ 7,  8,  9],
           [10, 11, 12]])
    创建 numpy array(例子)
  2. 查看 numpy array 的
    >>> m.shape #array([1, 2, 3])
    (2, 3)
    
    >>> x.shape #array([4, 5, 6])
    (3,)
    
    >>> y.shape #array([[ 7,  8,  9], [10, 11, 12]])
    (3,)
    View Code
  3. numpy.arrange
    >>> n = np.arange(0,30,2)
    >>> n
    array([ 0,  2,  4,  6,  8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28])
    numpy.arrange( )(例子)
  4. 改变numpy array的位置
    >>> n = np.arange(0,30,2)
    >>> n
    array([ 0,  2,  4,  6,  8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28])
    >>> n.shape
    (15,)
    
    >>> n = n.reshape(3,5) #从15列改成3列5行
    >>> n
    
    array([[ 0,  2,  4,  6,  8],
           [10, 12, 14, 16, 18],
           [20, 22, 24, 26, 28]])
    numpy.reshape( )(例子一)
    >>> o = np.linspace(0,4,9)
    >>> o
    array([ 0. ,  0.5,  1. ,  1.5,  2. ,  2.5,  3. ,  3.5,  4. ])
    >>> o.resize(3,3)
    >>> o
    array([[ 0. ,  0.5,  1. ],
           [ 1.5,  2. ,  2.5],
           [ 3. ,  3.5,  4. ]])
    numpy.reshape( )(例子二)
  5. numpy.ones( ) ,numpy.zeros( ),numpy.eye( )
    >>> r1 = np.ones((3,2))
    >>> r1
    array([[ 1.,  1.],
           [ 1.,  1.],
           [ 1.,  1.]])
    
    >>> r1 = np.zeros((2,3))
    >>> r1
    array([[ 0.,  0.,  0.],
           [ 0.,  0.,  0.]])
    
    >>> r2 = np.eye(3)
    >>> r2
    array([[ 1.,  0.,  0.],
           [ 0.,  1.,  0.],
           [ 0.,  0.,  1.]])
    numpy.ones/zeros/eye( )(例子)

    可以定义整数

    >>> r5 = np.ones([2,3], int)
    >>> r5
    array([[1, 1, 1],
           [1, 1, 1]])
    
    >>> r5 = np.ones([2,3])
    >>> r5
    array([[ 1.,  1.,  1.],
           [ 1.,  1.,  1.]])
    numpy.ones(x,int)(例子)
  6. numpy.diag( )
    >>> y = np.array([4,5,6])
    >>> y
    array([4, 5, 6])
    
    >>> np.diag(y)
    array([[4, 0, 0],
           [0, 5, 0],
           [0, 0, 6]])
    diag( )(例子)
  7. 复制 numpy array
    >>> r3 = np.array([1,2,3] * 3)
    >>> r3
    array([1, 2, 3, 1, 2, 3, 1, 2, 3])
    
    >>> r4 = np.repeat([1,2,3],3)
    >>> r4
    array([1, 1, 1, 2, 2, 2, 3, 3, 3])
    复制numpy array(例子)
  8. numpy中的 vstack和 hstack
    >>> r5 = np.ones([2,3], int)
    >>> r5
    array([[1, 1, 1],
           [1, 1, 1]])
    
    >>> r6 = np.vstack([r5,2*r5])
    >>> r6
    array([[1, 1, 1],
           [1, 1, 1],
           [2, 2, 2],
           [2, 2, 2]])
    
    >>> r7 = np.hstack([r5,2*r5])
    >>> r7
    array([[1, 1, 1, 2, 2, 2],
           [1, 1, 1, 2, 2, 2]])
    numpy.vstack( )和np.hstack( )(例子)
  9. numpy 中的加减乘除操作一 (+-*/)
    >>> mylist = [1,2,3]
    >>> x = np.array(mylist)
    >>> y = np.array([4,5,6])
    
    >>> x+y
    array([5, 7, 9])
    
    >>> x-y
    array([-3, -3, -3])
    
    >>> x*y
    array([ 4, 10, 18])
    
    >>> x**2
    array([1, 4, 9])
    
    >>> x.dot(y)
    32
    numpy中的加减乘除(例子一)
  10. numpy 中的加减乘除操作二:sum( )、max( )、min( )、mean( )、std( )
    >>> a = np.array([1,2,3,4,5])
    >>> a.sum()
    15
    
    >>> a.max()
    5
    
    >>> a.min()
    1
    
    >>> a.mean()
    3.0
    
    >>> a.std()
    1.4142135623730951
    
    >>> a.argmax()
    4
    
    >>> a.argmin()
    0
    numpy中的加减乘除(例子二)
  11. 查看numpy array 的数据类型
    >>> y = np.array([4,5,6])
    >>> z = np.array([y, y**2])
    >>> z
    array([[ 4,  5,  6],
           [16, 25, 36]])
    
    >>> z.shape
    (2, 3)
    
    >>> z.T.shape
    (3, 2)
    
    >>> z.dtype
    dtype('int64')
    
    >>> z = z.astype('f')
    
    >>> z.dtype
    dtype('float32')
    numpy array 的数据类型
  12. numpy 中的索引和切片
    >>> s = np.arange(13)
    >>> s
    array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12])
    
    >>> s = np.arange(13) ** 2
    >>> s
    array([  0,   1,   4,   9,  16,  25,  36,  49,  64,  81, 100, 121, 144])
    
    >>> s[0],s[4],s[0:3]
    (0, 16, array([0, 1, 4]))
    
    >>> s[1:5]
    array([ 1,  4,  9, 16])
    
    >>> s[-4:]
    array([ 81, 100, 121, 144])
    
    >>> s[-5:-2]
    array([ 64,  81, 100])
    numpy索引和切片(例子一)
    >>> r = np.arange(36)
    >>> r.resize((6,6))
    >>> r
    array([[ 0,  1,  2,  3,  4,  5],
           [ 6,  7,  8,  9, 10, 11],
           [12, 13, 14, 15, 16, 17],
           [18, 19, 20, 21, 22, 23],
           [24, 25, 26, 27, 28, 29],
           [30, 31, 32, 33, 34, 35]])
    
    >>> r[2,2]
    14
    
    >>> r[3,3:6]
    array([21, 22, 23])
    
    >>> r[:2,:-1]
    array([[ 0,  1,  2,  3,  4],
           [ 6,  7,  8,  9, 10]])
    
    >>> r[-1,::2]
    array([30, 32, 34])
    
    >>> r[r > 30] #取r大于30的数据
    array([31, 32, 33, 34, 35])
    
    >>> re2 = r[r > 30] = 30
    >>> re2
    30
    >>> r8 = r[:3,:3]
    >>> r8
    
    array([[ 0,  1,  2],
           [ 6,  7,  8],
           [12, 13, 14]])
    
    >>> r8[:] = 0
    
    >>> r8
    array([[0, 0, 0],
           [0, 0, 0],
           [0, 0, 0]])
    
    >>> r 
    array([[ 0,  0,  0,  3,  4,  5],
           [ 0,  0,  0,  9, 10, 11],
           [ 0,  0,  0, 15, 16, 17],
           [18, 19, 20, 21, 22, 23],
           [24, 25, 26, 27, 28, 29],
           [30, 30, 30, 30, 30, 30]])
    numpy索引和切片(例子二)
  13. copy numpy array 的数组
    >>> r = np.arange(36)
    >>> r.resize((6,6))
    >>> r_copy = r.copy()
    >>> r
    array([[ 0,  1,  2,  3,  4,  5],
           [ 6,  7,  8,  9, 10, 11],
           [12, 13, 14, 15, 16, 17],
           [18, 19, 20, 21, 22, 23],
           [24, 25, 26, 27, 28, 29],
           [30, 31, 32, 33, 34, 35]])
    
    >>> r_copy
    array([[ 0,  1,  2,  3,  4,  5],
           [ 6,  7,  8,  9, 10, 11],
           [12, 13, 14, 15, 16, 17],
           [18, 19, 20, 21, 22, 23],
           [24, 25, 26, 27, 28, 29],
           [30, 31, 32, 33, 34, 35]])
    
    >>> r_copy[:] = 10
    
    >>> r_copy
    array([[10, 10, 10, 10, 10, 10],
           [10, 10, 10, 10, 10, 10],
           [10, 10, 10, 10, 10, 10],
           [10, 10, 10, 10, 10, 10],
           [10, 10, 10, 10, 10, 10],
           [10, 10, 10, 10, 10, 10]])
    copy( )例子
  14. 其他操作
    >>> test = np.random.randint(0,10,(4,3))
    >>> test
    array([[3, 5, 2],
           [7, 7, 9],
           [8, 9, 2],
           [2, 9, 1]])
    
    >>> for row in test:
    ...     print(row)
    ... 
    [3 5 2]
    [7 7 9]
    [8 9 2]
    [2 9 1]
    
    >>> for i in range(len(test)):
    ...     print(test[i])
    ... 
    [3 5 2]
    [7 7 9]
    [8 9 2]
    [2 9 1]
    
    >>> for i, row in enumerate(test):
    ...     print('row', i, 'is', row)
    ... 
    row 0 is [3 5 2]
    row 1 is [7 7 9]
    row 2 is [8 9 2]
    row 3 is [2 9 1]
    
    >>> test2 = test ** 2
    >>> test2
    array([[ 9, 25,  4],
           [49, 49, 81],
           [64, 81,  4],
           [ 4, 81,  1]])
    
    >>> for i,j, in zip(test,test2):
    ...     print(i, '+', j, '=', i + j)
    ... 
    [3 5 2] + [ 9 25  4] = [12 30  6]
    [7 7 9] + [49 49 81] = [56 56 90]
    [8 9 2] + [64 81  4] = [72 90  6]
    [2 9 1] + [ 4 81  1] = [ 6 90  2]
    >>> 
    numpy array 的其他操作例子

 

Series 的介绍和操作实战

如果是输入一个字典类型的话,字典的键会自动变成 Index,然后它的值是Value

from pandas import Series, DataFrame
import pandas as pd
pd.Series(['Dog','Bear','Tiger','Moose','Giraffe','Hippopotamus','Mouse'], name='Animals') #接受一个列表类型的数据
def __init__(self, data=None, index=None, dtype=None, name=None,
                 copy=False, fastpath=False):
Series的__init__方法

  1. 创建 Series 类型
    第一:你可以传入一个列表或者是字典来创建 Series,如果传入的是列表,Python会自动把 [0,1,2] 作为 Series 的索引。
    第二:如果你传入的是字符串类型的数据,Series 返回的dtype是object;如果你传入的是数字类型的数据,Series 返回的dtype是int64
    >>> from pandas import Series, DataFrame
    >>> import pandas as pd
    >>> animals = ['Tiger','Bear','Moose']
    
    >>> s1 = pd.Series(animals) 
    >>> s1
    0    Tiger
    1     Bear
    2    Moose
    dtype: object
    
    >>> s2 = pd.Series([1,2,3])
    >>> s2
    0    1
    1    2
    2    3
    dtype: int64
    创建 Series

    Series如何处理 NaN的数据?

    >>> animals2 = ['Tiger','Bear',None]
    >>> s3 = pd.Series(animals2) 
    >>> s3
    0    Tiger
    1     Bear
    2     None
    dtype: object
    
    >>> s4 = pd.Series([1,2,None]) 
    >>> s4
    0    1.0
    1    2.0
    2    NaN
    dtype: float64
    Series NaN数据(范例)
  2. Series 中的 NaN数据和如何检查 NaN数据是否相等,这时候需要调用 np.isnan( )方法
    >>> import numpy as np
    >>> np.nan == None
    False
    
    >>> np.nan == np.nan
    False
    
    >>> np.isnan(np.nan)
    True
    np.isnan( )
  3. Series 默应 Index 是 [0,1,2],但也可以自定义 Series 中的Index
    >>> import numpy as np
    >>> sports = {
    ...     'Archery':'Bhutan',
    ...     'Golf':'Scotland',
    ...     'Sumo':'Japan',
    ...     'Taekwondo':'South Korea'
    ... }
    
    >>> s5 = pd.Series(sports)
    >>> s5
    Archery           Bhutan
    Golf            Scotland
    Sumo               Japan
    Taekwondo    South Korea
    dtype: object
    
    >>> s5.index
    Index(['Archery', 'Golf', 'Sumo', 'Taekwondo'], dtype='object')
    自定义 Series 中的Index(例子一)
    >>> from pandas import Series, DataFrame
    >>> import pandas as pd
    >>> s6 = pd.Series(['Tiger','Bear','Moose'], index=['India','America','Canada'])
    >>> s6
    India      Tiger
    America     Bear
    Canada     Moose
    dtype: object
    自定义 Series 中的Index(例子一)
  4. 查询 Series 的数据有两种方法,第一是通过index方法 e.g. s.iloc[2];第二是通过label方法 e.g. s.loc['America']
    >>> from pandas import Series, DataFrame
    >>> import pandas as pd
    >>> s6
    India      Tiger
    America     Bear
    Canada     Moose
    dtype: object
    
    >>> s6.iloc[2] #获取 index2位置的数据
    'Moose'
    
    >>> s6.loc['America'] #获取 label: America 的值
    'Bear'
    
    >>> s6[1] #底层调用了 s6.iloc[1]
    'Bear'
    
    >>> s6['India'] #底层调用了 s6.loc['India']
    'Tiger'
    查询Series(例子)
  5. Series 的数据操作: sum( ),它底层也是调用 numpy 的方法
    >>> s7 = pd.Series([100.00,120.00,101.00,3.00])
    >>> s7
    0    100.0
    1    120.0
    2    101.0
    3      3.0
    dtype: float64
    
    >>> total = 0
    >>> for item in s7:
    ...     total +=item
    ... 
    >>> total
    324.0
    
    >>> total2 =  np.sum(s7)
    >>> total2
    324.0
    np.sum(s7)
    >>> s8 = pd.Series(np.random.randint(0,1000,10000))
    >>> s8.head()
    0     25
    1    399
    2    326
    3    479
    4    603
    dtype: int64
    >>> len(s8)
    10000
    head( )例子
  6. Series 也可以存储混合型数据
    >>> s9 = pd.Series([1,2,3])
    >>> s9.loc['Animals'] = 'Bears'
    >>> s9
    0              1
    1              2
    2              3
    Animals    Bears
    dtype: object
    混合型存储数据(例子)
  7. Series 中的 append( ) 用法
    >>> original_sports = pd.Series({'Archery':'Bhutan',
    ...                              'Golf':'Scotland',
    ...                              'Sumo':'Japan',
    ...                              'Taekwondo':'South Korea'})
    >>> cricket_loving_countries = pd.Series(['Australia', 'Barbados','Pakistan','England'],
    ...                                      index=['Cricket','Cricket','Cricket','Cricket'])
    >>> all_countries = original_sports.append(cricket_loving_countries)
    
    >>> original_sports
    Archery           Bhutan
    Golf            Scotland
    Sumo               Japan
    Taekwondo    South Korea
    dtype: object
    
    >>> cricket_loving_countries
    Cricket    Australia
    Cricket     Barbados
    Cricket     Pakistan
    Cricket      England
    dtype: object
    
    >>> all_countries
    Archery           Bhutan
    Golf            Scotland
    Sumo               Japan
    Taekwondo    South Korea
    Cricket        Australia
    Cricket         Barbados
    Cricket         Pakistan
    Cricket          England
    dtype: object
    Series类型的append( )

 

DataFrame

这是创建一个DataFrame对象的基本语句:接受字典类型的数据;字典中的Key (e.g. Animals, Owners) 对应 DataFrame中的Columns,它的 Value 也相当于数据库表中的每一行数据。 

data = {
        'Animals':['Dog','Bear','Tiger','Moose','Giraffe','Hippopotamus','Mouse'],
        'Owners':['Chris','Kevyn','Bob','Vinod','Daniel','Fil','Stephanie']
}
df = DataFrame(data, columns=['Animals','Owners'])

 

基础操作

  1. 创建DataFrame
    >>> from pandas import Series, DataFrame
    >>> import pandas as pd
    >>> data = {'name':['yahoo','google','facebook'],
    ...         'marks':[200,400,800],
    ...         'price':[9,3,7]}
    >>> df = DataFrame(data)
    >>> df
       marks      name  price
    0    200     yahoo      9
    1    400    google      3
    2    800  facebook      7
    创建DataFrame(例子一)
    >>> df2 = DataFrame(data, columns=['name','price','marks'])
    >>> df2
           name  price  marks
    0     yahoo      9    200
    1    google      3    400
    2  facebook      7    800
    
    >>> df3 = DataFrame(data, columns=['name','price','marks'], index=['a','b','c'])
    >>> df3
           name  price  marks
    a     yahoo      9    200
    b    google      3    400
    c  facebook      7    800
    
    >>> df4 = DataFrame(data, columns=['name','price','marks', 'debt'], index=['a','b','c'])
    >>> df4
           name  price  marks debt
    a     yahoo      9    200  NaN
    b    google      3    400  NaN
    c  facebook      7    800  NaN
    创建DataFrame(例子二)
    >>> import pandas as pd
    >>> purchase_1 = pd.Series({'Name':'Chris','Item Purchased':'Dog Food','Cost':22.50})
    >>> purchase_2 = pd.Series({'Name':'Kelvin','Item Purchased':'Kitty Litter','Cost':2.50})
    >>> purchase_3 = pd.Series({'Name':'Vinod','Item Purchased':'Bird Seed','Cost':5.00})
    >>> 
    >>> df = pd.DataFrame([purchase_1,purchase_2,purchase_3],index=['Store 1','Store 2','Store 1'])
    >>> df
             Cost Item Purchased    Name
    Store 1  22.5       Dog Food   Chris
    Store 2   2.5   Kitty Litter  Kelvin
    Store 1   5.0      Bird Seed   Vinod
    创建DataFrame(例子三)
  2. 查询 dataframe 的index:df.loc['index']
    >>> df.loc['Store 2']
    Cost                       2.5
    Item Purchased    Kitty Litter
    Name                    Kelvin
    Name: Store 2, dtype: object
    df.loc['Store 2']
    >>> df.loc['Store 1']
             Cost Item Purchased   Name
    Store 1  22.5       Dog Food  Chris
    Store 1   5.0      Bird Seed  Vinod
    df.loc['Store 1']
    >>> df['Item Purchased']
    Store 1        Dog Food
    Store 2    Kitty Litter
    Store 1       Bird Seed
    Name: Item Purchased, dtype: object
    df['Item Purchased']
  3. 查 store1 的 cost 是多少
    >>> df.loc['Store 1', 'Cost']
    Store 1    22.5
    Store 1     5.0
    Name: Cost, dtype: float64
    df.loc['Store 1', 'Cost']
  4. 查询Cost大于3的Name
    >>> df['Name'][df['Cost']>3]
    Store 1    Chris
    Store 1    Vinod
    Name: Name, dtype: object
    df['Name'][df['Cost']>3]
  5. 查询DataFrame 的类型
    >>> type(df.loc['Store 2'])
    <class 'pandas.core.series.Series'>
    type( )例子
  6. drop dataframe (但这不会把原来的 dataframe drop 掉)
    >>> df.drop('Store 1')
             Cost Item Purchased    Name
    Store 2   2.5   Kitty Litter  Kelvin
    
    >>> df
             Cost Item Purchased    Name
    Store 1  22.5       Dog Food   Chris
    Store 2   2.5   Kitty Litter  Kelvin
    Store 1   5.0      Bird Seed   Vinod
    df.drop('Store 1')
    >>> copy_df = df.copy()
    >>> copy_df
             Cost Item Purchased    Name
    Store 1  22.5       Dog Food   Chris
    Store 2   2.5   Kitty Litter  Kelvin
    Store 1   5.0      Bird Seed   Vinod
    >>> copy_df = df.drop('Store 1')
    >>> copy_df
             Cost Item Purchased    Name
    Store 2   2.5   Kitty Litter  Kelvin
    把dataframe数据drop的例子

    也可以用 del 把 Column 列删除掉

    >>> del copy_df['Name']
    >>> copy_df
             Cost Item Purchased
    Store 2   2.5   Kitty Litter
    del copy_df['Name']
  7. set_index
  8. rename column
  9. 可以修改dataframe里的数据
    >>> df = pd.DataFrame([purchase_1,purchase_2,purchase_3],index=['Store 1','Store 2','Store 1'])
    >>> df
             Cost Item Purchased    Name
    Store 1  22.5       Dog Food   Chris
    Store 2   2.5   Kitty Litter  Kelvin
    Store 1   5.0      Bird Seed   Vinod
    
    >>> df['Cost'] = df['Cost'] * 0.8
    >>> df
             Cost Item Purchased    Name
    Store 1  18.0       Dog Food   Chris
    Store 2   2.0   Kitty Litter  Kelvin
    Store 1   4.0      Bird Seed   Vinod
    df['Cost'] * 0.8
    >>> df = pd.DataFrame([purchase_1,purchase_2,purchase_3],index=['Store 1','Store 2','Store 1'])
    >>> costs = df['Cost']
    >>> costs
    Store 1    22.5
    Store 2     2.5
    Store 1     5.0
    Name: Cost, dtype: float64
    >>> costs += 2
    >>> costs
    Store 1    24.5
    Store 2     4.5
    Store 1     7.0
    Name: Cost, dtype: float64
    costs = df['Cost']

 

进阶操作

  1. Merge
    Full Outer Join
    Inner Join
    Left Join
    Right Join
  2. apply
  3. group by
  4. agg
  5. astype
  6. cut
    s = pd.Series([168, 180, 174, 190, 170, 185, 179, 181, 175, 169, 182, 177, 180, 171])
    pd.cut(s, 3)
    pd.cut(s, 3, labels=['Small', 'Medium', 'Large'])
    cut( )
  7. pivot table 

 

Date in DataFrame

  1. Timestampe
  2. period
  3. DatetimeINdex
  4. PeriodIndex
  5. to_datetime
  6. Timedelta
  7. date_range
  8. difference between date value
  9. resample
  10. asfreq - changing the frequency of the date

 

读取 csv 文件

import pandas as pd
pd.read_csv('student.csv')
  1. 读取csv
    >>> from pandas import Series, DataFrame
    >>> import pandas as pd
    >>> df_student = pd.read_csv('student.csv')
    >>> df_student
            name   class  marks  age
        janice  python     80   22
          alex  python     95   21
         peter  python     85   25
           ken    java     75   28
     lawerance    java     50   22
    pd.read_csv('student.csv')(例子一)
    df_student = pd.read_csv('student.csv', index_col=0, skiprows=1)
    pd.read_csv('student.csv')(例子二)
  2. 获取分数大于70的数据
    >>> df_student['marks'] > 70
        True
        True
        True
        True
       False
    Name: marks, dtype: bool
    方法一: df_student['marks'] > 70
    >>> df_student.where(df_student['marks']>70)
         name   class  marks   age
     janice  python   80.0  22.0
       alex  python   95.0  21.0
      peter  python   85.0  25.0
        ken    java   75.0  28.0
        NaN     NaN    NaN   NaN
    方法二: df_student.where(df_student['marks']>70)
    >>> df_student[df_student['marks'] > 70]
         name   class  marks  age
    0  janice  python     80   22
    1    alex  python     95   21
    2   peter  python     85   25
    3     ken    java     75   28
    方法三: df_student[df_student['marks'] > 70]
  3. 获取class = 'python' 的数据,df.count( ) 是不会把 NaN数据计算在其中
    >>> df2 = df_student.where(df_student['class'] == 'python') 
    >>> df2
         name   class  marks   age
    0  janice  python   80.0  22.0
    1    alex  python   95.0  21.0
    2   peter  python   85.0  25.0
    3     NaN     NaN    NaN   NaN
    4     NaN     NaN    NaN   NaN
    
    >>> df2 = df_student[df_student['class'] == 'python']
    >>> df2
         name   class  marks  age
    0  janice  python     80   22
    1    alex  python     95   21
    2   peter  python     85   25
    df_student.where( )例子
  4. 计算 class 的数目 e.g. count( )
    >>> df2['class'].count() #不会把 NaN也计算
    3
    
    >>> df_student['class'].count() #会把 NaN也计算
    5
    df.count( )例子
  5. 删取NaN数据
    >>> df3 = df2.dropna()
    >>> df3
         name   class  marks   age
    0  janice  python   80.0  22.0
    1    alex  python   95.0  21.0
    2   peter  python   85.0  25.0
    df2.dropna()
  6. 获取age大于23 学生的数据
    >>> df_student
            name   class  marks  age
    0     janice  python     80   22
    1       alex  python     95   21
    2      peter  python     85   25
    3        ken    java     75   28
    4  lawerance    java     50   22
    
    >>> df_student[df_student['age'] > 23]
        name   class  marks  age
    2  peter  python     85   25
    3    ken    java     75   28
    
    >>> df_student['age'] > 23
    0    False
    1    False
    2     True
    3     True
    4    False
    Name: age, dtype: bool
    
    >>> len(df_student[df_student['age'] > 23])
    2
    df_student[df_student['age'] > 23]
  7. 获取age大于23分数大于80分学生的数据
    >>> df_student
            name   class  marks  age
    0     janice  python     80   22
    1       alex  python     95   21
    2      peter  python     85   25
    3        ken    java     75   28
    4  lawerance    java     50   22
    >>> df_and = df_student[(df_student['age'] > 23) & (df_student['marks'] > 80)]
    >>> df_and
        name   class  marks  age
    2  peter  python     85   25
    df_student[(df_student['age'] > 23) & (df_student['marks'] > 80)]
  8. 获取age大于23分数大于80分学生的数据
    >>> df_student
            name   class  marks  age
    0     janice  python     80   22
    1       alex  python     95   21
    2      peter  python     85   25
    3        ken    java     75   28
    4  lawerance    java     50   22
    
    >>> df_or = df_student[(df_student['age'] > 23) | (df_student['marks'] > 80)]
    >>> df_or
        name   class  marks  age
    1   alex  python     95   21
    2  peter  python     85   25
    3    ken    java     75   28
    df_student[(df_student['age'] > 23) | (df_student['marks'] > 80)]
  9. 重新定义index的数值 df.set_index( )
    >>> df_student = pd.read_csv('student.csv')
    >>> df_student
            name   class  marks  age
    0     janice  python     80   22
    1       alex  python     95   21
    2      peter  python     85   25
    3        ken    java     75   28
    4  lawerance    java     50   22
    
    >>> df_student['order_id'] = df_student.index
    >>> df_student
            name   class  marks  age  order_id
    0     janice  python     80   22         0
    1       alex  python     95   21         1
    2      peter  python     85   25         2
    3        ken    java     75   28         3
    4  lawerance    java     50   22         4
    
    >>> df_student = df_student.set_index('class')
    >>> df_student
                 name  marks  age  order_id
    class                                  
    python     janice     80   22         0
    python       alex     95   21         1
    python      peter     85   25         2
    java          ken     75   28         3
    java    lawerance     50   22         4
    df_student.set_index( )例子
  10. 获取在 dataframe column 中唯一的数据
    >>> df_student = pd.read_csv('student.csv')
    >>> df_student['class'].unique()
    array(['python', 'java'], dtype=object)
    df.unique( )例子

 

python 的可视化 matplotlib

  1. plot

 

 

   

參考資料

Coursera: Introduction to Data Science in Python

Data Science (Chris Albon)

Data Science: GoodHart's Law | Goodhart's Law

Pandas文档Pandas中文文档

 

 

posted @ 2016-11-13 19:03  無情  阅读(6179)  评论(0编辑  收藏  举报