相信了解机器学习的对MNIST不会陌生,Google的工程师Yaroslav Bulatov 创建了notMNIST,它和MNIST类似,图像28x28,也有10个Label(A-J)。

在Tensorflow中已经封装好了读取MNIST数据集的函数 read_data_sets(),

from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets
mnist = read_data_sets("data", one_hot=True, reshape=False, validation_size=0)

但是由于notMNIST的格式和MNIST的格式不是完全相同,所以基于tensorflow创建的针对MNIST的模型并不能直接读取notMNIST的图片。

Github上有人编写了格式转换代码(https://github.com/davidflanagan/notMNIST-to-MNIST),转换后可直接使用read_data_sets()完成读取,这样模型代码的变动就不会很大。本文是对在阅览完代码后所做的注释。

  1 import numpy, imageio, glob, sys, os, random
  2 #Imageio 提供简单的用于读写图像数据的接口
  3 #glob 功能类似于文件搜索,查找文件只用到三个匹配符:”*”, “?”, “[]”。”*”匹配0个或多个字符;”?”匹配单个字符;”[]”匹配指定范围内的字符,如:[0-9]匹配数字。
  4 def get_labels_and_files(folder, number):
  5   # Make a list of lists of files for each label
  6   filelists = []
  7   for label in range(0,10):
  8     filelist = []
  9     filelists.append(filelist);
 10     dirname = os.path.join(folder, chr(ord('A') + label))
 11     #label实际为0-9,chr(ord('A') + label)返回A-J
 12     #拼接路径dirname=folder/[A-J]
 13     for file in os.listdir(dirname):
 14     #返回一个装满当前路径中文件名的list
 15       if (file.endswith('.png')):
 16         fullname = os.path.join(dirname, file)
 17         if (os.path.getsize(fullname) > 0):
 18           filelist.append(fullname)
 19         else:
 20           print('file ' + fullname + ' is empty')
 21     # sort each list of files so they start off in the same order
 22     # regardless of how the order the OS returns them in
 23     filelist.sort()
 24 
 25   # Take the specified number of items for each label and
 26   # build them into an array of (label, filename) pairs
 27   # Since we seeded the RNG, we should get the same sample each run
 28   labelsAndFiles = []
 29   for label in range(0,10):
 30     filelist = random.sample(filelists[label], number)
 31     #随机采样 设定个数的文件名
 32     for filename in filelist:
 33       labelsAndFiles.append((label, filename))
 34       #Python的元组与列表类似,不同之处在于元组的元素不能修改。元组使用小括号,列表使用方括号。
 35   return labelsAndFiles
 36 
 37 def make_arrays(labelsAndFiles):
 38   images = []
 39   labels = []
 40   for i in range(0, len(labelsAndFiles)):
 41 
 42     # display progress, since this can take a while
 43     if (i % 100 == 0):
 44       sys.stdout.write("\r%d%% complete" % ((i * 100)/len(labelsAndFiles)))
 45       #\r 返回第一个指针,覆盖前面的内容
 46       sys.stdout.flush()
 47 
 48     filename = labelsAndFiles[i][1]
 49     try:
 50       image = imageio.imread(filename)
 51       images.append(image)
 52       labels.append(labelsAndFiles[i][0])
 53     except:
 54       # If this happens we won't have the requested number
 55       print("\nCan't read image file " + filename)
 56 
 57   count = len(images)
 58   imagedata = numpy.zeros((count,28,28), dtype=numpy.uint8)
 59   labeldata = numpy.zeros(count, dtype=numpy.uint8)
 60   for i in range(0, len(labelsAndFiles)):
 61     imagedata[i] = images[i]
 62     labeldata[i] = labels[i]
 63   print("\n")
 64   return imagedata, labeldata
 65 
 66 def write_labeldata(labeldata, outputfile):
 67   header = numpy.array([0x0801, len(labeldata)], dtype='>i4')
 68   with open(outputfile, "wb") as f:
 69   #以二进制写模式打开
 70   #这里使用了 with 语句,不管在处理文件过程中是否发生异常,都能保证 with 语句执行完毕后已经关闭了打开的文件句柄
 71     f.write(header.tobytes())
 72     #写入二进制数
 73     f.write(labeldata.tobytes())
 74 
 75 def write_imagedata(imagedata, outputfile):
 76   header = numpy.array([0x0803, len(imagedata), 28, 28], dtype='>i4')
 77   with open(outputfile, "wb") as f:
 78     f.write(header.tobytes())
 79     f.write(imagedata.tobytes())
 80     
 81 
 82 
 83 def main(argv):
 84   # Uncomment the line below if you want to seed the random
 85   # number generator in the same way I did to produce the
 86   # specific data files in this repo.
 87   # random.seed(int("notMNIST", 36))
 88   #当我们设置相同的seed,每次生成的随机数相同。如果不设置seed,则每次会生成不同的随机数
 89 
 90   labelsAndFiles = get_labels_and_files(argv[1], int(argv[2]))
 91   #随机排序
 92   random.shuffle(labelsAndFiles)
 93   
 94   imagedata, labeldata = make_arrays(labelsAndFiles)
 95   write_labeldata(labeldata, argv[3])
 96   write_imagedata(imagedata, argv[4])
 97 
 98 if __name__=='__main__':
 99 #Make a script both importable and executable
100 #如果我们是直接执行某个.py文件的时候,该文件中那么”__name__ == '__main__'“是True
101 #如果被别的模块import,__name__!='__main__',这样main()就不会执行
102 
103   main(sys.argv)

使用方法

下载解压notMNIST:

curl -o notMNIST_small.tar.gz http://yaroslavvb.com/upload/notMNIST/notMNIST_small.tar.gz
curl -o notMNIST_large.tar.gz http://yaroslavvb.com/upload/notMNIST/notMNIST_large.tar.gz
tar xzf notMNIST_small.tar.gz
tar xzf notMNIST_large.tar.gz

运行转换代码:

python convert_to_mnist_format.py notMNIST_small 1000 data/t10k-labels-idx1-ubyte data/t10k-images-idx3-ubyte
python convert_to_mnist_format.py notMNIST_large 6000 data/train-labels-idx1-ubyte data/train-images-idx3-ubyte
gzip data/*ubyte

 

  

posted on 2017-07-12 20:58  J博士  阅读(1599)  评论(0编辑  收藏  举报