【BZOJ】1010: [HNOI2008]玩具装箱toy(dp+斜率优化)
http://www.lydsy.com/JudgeOnline/problem.php?id=1010
蛋疼用latex写了份题解。。
2015.03.07 upd:很多东西可能有问题,最好看下边提供的链接的题解
参考:http://www.cnblogs.com/proverbs/archive/2012/10/06/2713109.html
#include <cstdio> #include <cstring> #include <cmath> #include <string> #include <iostream> #include <algorithm> #include <queue> #include <set> #include <map> using namespace std; typedef long long ll; #define pii pair<int, int> #define mkpii make_pair<int, int> #define pdi pair<double, int> #define mkpdi make_pair<double, int> #define pli pair<ll, int> #define mkpli make_pair<ll, int> #define rep(i, n) for(int i=0; i<(n); ++i) #define for1(i,a,n) for(int i=(a);i<=(n);++i) #define for2(i,a,n) for(int i=(a);i<(n);++i) #define for3(i,a,n) for(int i=(a);i>=(n);--i) #define for4(i,a,n) for(int i=(a);i>(n);--i) #define CC(i,a) memset(i,a,sizeof(i)) #define read(a) a=getint() #define print(a) printf("%d", a) #define dbg(x) cout << (#x) << " = " << (x) << endl #define error(x) (!(x)?puts("error"):0) #define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; } #define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; } inline const ll max(const ll &a, const ll &b) { return a>b?a:b; } inline const ll min(const ll &a, const ll &b) { return a<b?a:b; } const int N=50005; int n, l, front, tail, q[N]; ll s[N], d[N], f[N], c; inline ll sqr(ll a) { return a*a; } inline double x(int j, int k) { return (double)(d[k]-d[j]+sqr(f[k]+c)-sqr(f[j]+c))/2.0/(double)(f[k]-f[j]); } int main() { read(n); read(l); for1(i, 1, n) s[i]=s[i-1]+(ll)getint(); for1(i, 1, n) f[i]=s[i]+i; c=l+1; tail=1; for1(i, 1, n) { while(front+1<tail && x(q[front], q[front+1])<=f[i]) ++front; int j=q[front]; d[i]=d[j]+sqr(f[i]-f[j]-c); while(front+1<tail && x(q[tail-2], q[tail-1])>=x(q[tail-1], i)) --tail; q[tail++]=i; } printf("%lld\n", d[n]); return 0; }
Description
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.
Input
第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7
Output
输出最小费用
Sample Input
5 4
3
4
2
1
4
3
4
2
1
4
Sample Output
1
HINT
Source
博客地址:www.cnblogs.com/iwtwiioi 本文为博主原创文章,未经博主允许不得转载。一经发现,必将追究法律责任。