深入浅出多线程——ReentrantLock (一)
ReentrantLock是一个排它重入锁,与synchronized关键字语意类似,但比其功能更为强大。该类位于java.util.concurrent.locks包下,是Lock接口的实现类。基本用法如下:
class X { private final ReentrantLock lock = new ReentrantLock(); // ... public void m() { lock.lock(); // block until condition holds try { // ... method body } finally { lock.unlock() } } }
本文章会围绕核心方法lock(),unlock()进行分析。在开始之前,对部分概念进行阐述:
1,RenntrantLock是一个排它重入锁,重入次数为Integer.MAX_VALUE,其中通过构造实现两大核心(公平锁,非公平锁)。在默认情况下是非公平锁。
2,RenntrantLock的公平锁和非公平锁基于抽象类AbstractQueuedSynchornizer,简称AQS。在源码分析阶段,也会涉及该类相关的原理分析。更加详细的会在后续文章中单独说明。
3,AQS中涉及到了大量的Compare and swap操作,简称CAS。CAS利用的是cpu级别原子指令无锁的去修改目标值,在并发场景下只会有一个成功。在java中有大量的应用,其中最经典的为java.util.concurrent.atomic包下的相关类。更加详细的阐述会在后续文章中单独说明。
原理分析
我们按照默认的不公平锁为例子进行深入。
lock()方法分析
NonfairSync.lock()
1 final void lock() { 2 if (compareAndSetState(0, 1)) 3 setExclusiveOwnerThread(Thread.currentThread()); 4 else 5 acquire(1); 6 }
首先去尝试将state值从0改为1,如果修改成功,把该线程设置为Owner。因为用CAS的方式去修改这个值,在并发环境下只会有一个成功。不成功的则进入acquire(1)方法。
AbstractQueuedSynchronizer.acquire(int)
1 public final void acquire(int arg) { 2 if (!tryAcquire(arg) && 3 acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) 4 selfInterrupt(); 5 }
该方法,首先在此尝试修改state的值,尽量用最小的代价设置成功。
具体方法代码如下:
NonfairSync.tryAcquire(int)
1 protected final boolean tryAcquire(int acquires) { 2 return nonfairTryAcquire(acquires); 3 }
直接调用了nonfairTryAcquire(acquires)。如下:
Sync.nonfairTryAcquire(int)
1 final boolean nonfairTryAcquire(int acquires) { 2 final Thread current = Thread.currentThread(); 3 int c = getState(); 4 if (c == 0) { 5 if (compareAndSetState(0, acquires)) { 6 setExclusiveOwnerThread(current); 7 return true; 8 } 9 } 10 else if (current == getExclusiveOwnerThread()) { 11 int nextc = c + acquires; 12 if (nextc < 0) // overflow 13 throw new Error("Maximum lock count exceeded"); 14 setState(nextc); 15 return true; 16 } 17 return false; 18 }
首先判断state的值是否为0。如果为0,则尝试修改state为1,如果设置成功,则将执行线程Owner为当前线程。如果state不为0,则判断当前线程是否与执行线程Owner一致。如果一致则只对state加1,这个地方实现了类似偏向锁。
如果条件都不满足,返回false,则执行acquireQueued(addWaiter(Node.EXCLUSIVE), arg)方法。从里往外看,
首先调用的是addWaiter(Node.EXCLUSIVE)方法,该方法的参数为Node.EXCLUSIVE,表示为队列为独占模式。
AbstractQueuedSynchronizer.addWaiter(Node)
1 private Node addWaiter(Node mode) { 2 Node node = new Node(Thread.currentThread(), mode); 3 // Try the fast path of enq; backup to full enq on failure 4 Node pred = tail; 5 if (pred != null) { 6 node.prev = pred; 7 if (compareAndSetTail(pred, node)) { 8 pred.next = node; 9 return node; 10 } 11 } 12 enq(node); 13 return node; 14 }
第2行代码是 创建了一个独占模式的队列节点node,通过node实现可以看出是双向链表数据结构。
判断列队pred是否为空,如果不为空,则node的节点prev变量设置为pred。尝试去修改列队tail的值为node,如果成功则直接返回。
因为第一次进入,tail肯定为空,直接执行enq(node)方法。
AbstractQueuedSynchronizer.enq(Node)
1 private Node enq(final Node node) { 2 for (;;) { 3 Node t = tail; 4 if (t == null) { // Must initialize 5 if (compareAndSetHead(new Node())) 6 tail = head; 7 } else { 8 node.prev = t; 9 if (compareAndSetTail(t, node)) { 10 t.next = node; 11 return t; 12 } 13 } 14 } 15 }
enq(node)方法进来是一个自旋操作,一段很经典的代码。
首先判断tail是否为空,因为第一次进入肯定为空。那么实例化一个空节点,将队列head,tail指向该空节点。完成该动作后再次自旋,此时tail肯定是不为空的,则直接执行else内容。
首先将node节点的上游指向tail后利用cas将队列tail设置为node,然后将原先的tail(t)的next指向node,此时node节点成功加入列队中。
再次回到acquire(1)方法,执行acquireQueued(addWaiter(Node.EXCLUSIVE), arg)方法。
AbstractQueuedSynchronizer.acquireQueued(Node,int)
1 final boolean acquireQueued(final Node node, int arg) { 2 boolean failed = true; 3 try { 4 boolean interrupted = false; 5 for (;;) { 6 final Node p = node.predecessor(); 7 if (p == head && tryAcquire(arg)) { 8 setHead(node); 9 p.next = null; // help GC 10 failed = false; 11 return interrupted; 12 } 13 if (shouldParkAfterFailedAcquire(p, node) && 14 parkAndCheckInterrupt()) 15 interrupted = true; 16 } 17 } finally { 18 if (failed) 19 cancelAcquire(node); 20 } 21 }
该方法进来也是一个自旋操作,与enq方法类似。
第6行,node的上游此时指向的是空节点,虽然和head相等,但是由于是空线程,那么在执行tryAcquire(arg)方法肯定返回false。
代码直接来到了第13行,shouldParkAfterFailedAcquire(p,node)方法先执行,如下:
AbstractQueuedSynchronizer.shouldParkAfterFailedAcquire(Node,Node)
1 private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) { 2 int ws = pred.waitStatus; 3 if (ws == Node.SIGNAL) 4 return true; 5 if (ws > 0) { 6 do { 7 node.prev = pred = pred.prev; 8 } while (pred.waitStatus > 0); 9 pred.next = node; 10 } else { 11 compareAndSetWaitStatus(pred, ws, Node.SIGNAL); 12 } 13 return false; 14 }
首先判断node的上游节点的等待状态是否为-1,因为node的上游节点是空对象,waitStatus为初始值0。该方法会直接返回运行else里面内容,将waitStatus修改为-1。
通过acquireQueued自旋会再次来到该方法,此时waitStatus的值为-1,返回true。然后执行第二个方法parkAndCheckInterrupt()方法。如下:
AbstractQueuedSynchronizer.parkAndCheckInterrupt()
1 private final boolean parkAndCheckInterrupt() { 2 LockSupport.park(this); 3 return Thread.interrupted(); 4 }
进入该方法直接调用LockSupport.park(this)方法,意思是将该线程直接暂停,其线程状态在Runnable变为WAITING。等待调用LockSupport.unpark(this)将其唤醒,再次进入acquireQueued的自旋当中,直至能成功的把state的值从0变为1为止,当修改成功后,将队列的head设置为当前node。
unlock()方法分析
ReentrantLock.lock()
1 public void unlock() { 2 sync.release(1); 3 }
这个没啥好说的,直接调用了AQS里面的release方法了。
AbstractQueuedSynchronizer.release(int)
1 public final boolean release(int arg) { 2 if (tryRelease(arg)) { 3 Node h = head; 4 if (h != null && h.waitStatus != 0) 5 unparkSuccessor(h); 6 return true; 7 } 8 return false; 9 }
首先调用tryRelease(int)方法,尝试去释放该锁。如果释放成功,则进入if方法体,首先判断队列的head不为空,在判断head.waitStatus不为0(当前实际值为-1),则调用unparkSuccessor(Node)。
Sync.tryRelease(int)
1 protected final boolean tryRelease(int releases) { 2 int c = getState() - releases; 3 if (Thread.currentThread() != getExclusiveOwnerThread()) 4 throw new IllegalMonitorStateException(); 5 boolean free = false; 6 if (c == 0) { 7 free = true; 8 setExclusiveOwnerThread(null); 9 } 10 setState(c); 11 return free; 12 }
首先将state减1后,判断是否为0,如果为0,则正式释放,如果不为0,仅仅将state的值更新。在这个方法可以反映出 lock()调用几次,必须有相应的unlock()调用次数,否则造成死锁。
AbstractQueuedSynchronizer.unparkSuccessor(int)
1 private void unparkSuccessor(Node node) { 2 3 int ws = node.waitStatus; 4 if (ws < 0) 5 compareAndSetWaitStatus(node, ws, 0); 6 7 Node s = node.next; 8 if (s == null || s.waitStatus > 0) { 9 s = null; 10 for (Node t = tail; t != null && t != node; t = t.prev) 11 if (t.waitStatus <= 0) 12 s = t; 13 } 14 if (s != null) 15 LockSupport.unpark(s.thread); 16 }
首先判断node.waitStatus是否小于0,如果小于0,则将state变量修改为0。其次获取到node的下游节点,如果下游节点s 为空或者被取消,则从队列尾部向前查找符合条件的节点。如果不为空或者未被取消,则调用LockSupport.unpark(s.thread)将其唤醒。
总结
通过分析lock()和unlock(),我们得知AQS内部实现了一个基于双向链表的队列。发成资源竞争时,因为CAS的特性只会有一个成功,其他的均进入该队列,有点类似于synchronized的临界区。
执行中的线程再次调用lock()时,并不会进入等待列队,而是将state加1继续执行,基于偏向锁的思想去实现的。
在线程释放时,也要对应着将state进行每次减1。直到state值为0,才认为当前线程真正的释放。释放后调用当前线程的下游节点去执行,此时,因为是非公平锁的缘故,可能新加入的线程在当前线程释放时征用成功,state值又变为1。那当前线程的下游节点再次陷入WAITING状态。