python系列7进程线程和协程

目录

  进程

  线程

  协程

    上下文切换

 

前言:线程和进程的关系图

  由下图可知,在每个应用程序执行的过程中,都会去产生一个主进程和主线程来完成工作,当我们需要并发的执行的时候,就会通过主进程去生成一系列的子进程(然后通过子进程产生一系列的子线程)来使不同的cpu调用,从而达到并发的效果。但是需要注意的是,在一般情况下每个进程之间是相互独立的。

  GIL全局解释器锁在Python中是独有的,java和c#中都没有,他的作用主要是什么呢?我们都知道程序的执行最小单元是线程,在cpu1通过进程来调用线程的时候(只是在cpu调用的时候),只能轮询的去调用某个进程中的线程,线程并不能进行并发的执行,也就是说一个时刻每颗cpu只能通过一个进程中的一个线程来完成某项工作。

  在我们一般的程序中,如果没有特意的创建进程和线程,那么我们程序就是按照顺序一步一步执行的,当我们创建了进程和线程之后,就会产生并发执行的效果。

  进程

    优点: 可同时利用多个cpu,进行多个操作

    缺点: 重新开辟内存空间,非常耗费资源

    个数: 一般和cpu颗数相同

    使用场所: 一般是计算密集型

  线程

    优点: 共享内存(一个进程内),i/o操作可实现并发执行

    缺点: 抢占资源,切换上下文非常耗时

      个数: 一般依情况而定

    使用场所: i/o密集型

 

一.进程

  进程的定义

    进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位。其实进程就是程序执行的实例,程序放在那里是不会执行的,只能通过创建进程来完成程序的操作。例如:我现在想去做饭,首先我拿起菜刀,然后我去切菜,之后开火,炒菜。做饭其实就是一个程序,我拿刀,切菜,开火,炒菜就就可以看成是一个一个的进程,他们在程序的执行流中有序的执行从而完成了一个操作。

  1. 创建进程(Process类)

  对于我们写的一个程序而言,默认的都会有一个主进程和主线程来从上到小的去执行代码,如果一但遇到要去创建进程和线程,然后主进程就会创建进程和线程,(然后创建的子进程和子线程就会自己去执行他要的执行的代码),创建完成之后有两种操作,一个就是等待子进程或者子线程的操作完成之后在结束程序,另一种就是当我的主进程完成之后,就立马结束程序,无论你的子进程或者子线程有没有完成。

# 在windows下做实验的话,第一句必须加上
if __name__ == "__main__":
    # 创建进程,
    # 参数target后面的代表的是此进程要执行的函数名称
    # args后面跟的是一个元组,代表target后面函数所需要的参数
    p = multiprocessing.Process(target=foo, args=(1,))
    
    p.join(5)   # 当执行完此子进程之后再去执行其他的进程,参数5代表执行此子进程等待的最长时间,默认为s
    # daemon是指主进程是否要等待子进程完成之后再结束,默认是等待
    # True 代表不等待
    # False 代表等待
    p.daemon = True 
    p.start()   # 启动子进程
 1 # 下面这段代码显示结果为空,因为在主进程结束之后就结束程序了
 2 # 并不会去执行foo函数
 3 import multiprocessing
 4 import time
 5 
 6 def foo(args):
 7     # 这是个要通过子进程执行的函数
 8     time.sleep(3)   # 延迟三秒
 9     print(args)
10     
11 if __name__ == "__main__":
12     p = multiprocessing.Process(target=foo, args=(1,))
13     p.daemon = True # 不等待子进程结束
14     p.start()   
15 
16 
17 # 下面这段代码的执行结果为1 因为daemon的值为false,所以主进程要等待子进程执行完foo之后才会去结束程序
18 import multiprocessing
19 import time
20 
21 def foo(args):
22     # 这是个要通过子进程执行的函数
23     time.sleep(3)   # 延迟三秒
24     print(args)
25     
26 if __name__ == "__main__":
27     p = multiprocessing.Process(target=foo, args=(1,))
28     p.daemon = False # 不等待子进程结束
29     p.start()   
事例一daemon
# 当没有join的时候,输入结果为基本上是同时输出的123456789
import multiprocessing
import time

def foo(args):
    # 这是个要通过子进程执行的函数
    time.sleep(1)
    print(args)
if __name__ == "__main__":
    for i in range(10):
        p = multiprocessing.Process(target=foo, args=(i,))
        p.start()


#有join的时候,他是一个一个输出的,因为join代表的就是当这个子进程执行完之后才会去执行其他的进程
import multiprocessing
import time

def foo(args):
    # 这是个要通过子进程执行的函数
    time.sleep(1)
    print(args)
if __name__ == "__main__":
    for i in range(10):
        p = multiprocessing.Process(target=foo, args=(i,))
        p.start()
        p.join(2)
事例二join
# 下面这个代码不会输出任何值,当程序执行了1s之后就会结束原因是join默认等待的时间为1s中,但是你的子进程却需要10s的时间,所以子进程还没有执行完主进程就结束了
import multiprocessing
import time

def foo(args):
    # 这是个要通过子进程执行的函数
    time.sleep(10)
    print(args)
if __name__ == "__main__":
    p = multiprocessing.Process(target=foo, args=(1,))
    p.daemon = True
    p.start()
    p.join(1)
事例三join 

  2. 进程池(pool模块)

    什么叫做进程池呢?通俗点就是装进程的容器,在我们写程序的时候,我们不可能来一个程序,我们就去创建一个进程,进程是非常耗费资源的,因此我们通过事先定义一个装进程的容器(进程的个数是固定的),当我们程序需要的时候就会自动的去进程池中区取,如果进程池中的子进程数被取完了,我们就只有等待其他的程序释放了之后我们才能够继续使用。

if __name__ == "__main__":
    # 创建进程池
    proc_pool = multiprocessing.Pool(5)
    # 以下两个都是使用进程池的方式
    # apply:他内部使用了join方法,每一个子进程进行了完了之后才会去进行下一个子进程的使用
    # apply_async:他内部没有使用join方法,因此是所有的子进程并发的执行
    proc_pool.apply()
    proc_pool.apply_async()
 1 # 从结果可以看出来,每一个子进程完成了之后才会打印出最后的子进程创建完成
 2 import multiprocessing
 3 import time
 4 
 5 def foo(s1):
 6     time.sleep(1)
 7     print(s1)
 8 if __name__ == "__main__":
 9     # 创建进程池,进程的个数为5
10     proc_pool = multiprocessing.Pool(5)
11     for i in range(10):
12         # 创建十个子进程,每个子进程都去执行foo函数,传入的参数为i
13         proc_pool.apply(foo, args=(i, ))
14     print("子进程创建完成")
15 
16 输出结果:
17 0
18 1
19 2
20 3
21 4
22 5
23 6
24 7
25 8
26 9
27 子进程创建完成
事例一apply
# 结果是先打印了进程创建完毕,从执行结果可以看出来,apply_async函数会使所有的子进程并发执行,后面的join函数要使主进程等待子进程完成之后在关闭程序
import multiprocessing
import time

# 执行的函数
def foo(s1):
    time.sleep(1)
    return s1
# 回调函数
def foo2(s1):
    print(s1)
if __name__ == "__main__":
    # 创建进程池,进程的个数为5
    proc_pool = multiprocessing.Pool(5)
    for i in range(10):
        # 创建十个子进程,每个子进程都去执行foo函数,传入的参数为i,把foo函数的返回值当做参数给foo2,然后执行foo2函数
        proc_pool.apply_async(foo, args=(i, ), callback=foo2)
    print("子进程创建完成")
    # 关闭进程池
    proc_pool.close()
    # 等待子进程执行完毕之后返回
    proc_pool.join()

输出结果:
子进程创建完成
0
1
2
3
4
5
6
7
8
事例2 apply_aysnc

   3. 进程之间的共享

    进程之间本来是独立,互不影响的,如果实在想要在进程之间进行通信的话有两种方法。

      <1>. 数组

      <2>. manage模块创建特殊的数据类型

import multiprocessing
import multiprocessing
def f1(s1, dic):
    dic[s1] = s1

if __name__ == "__main__":
    # 创建一个manage的对象
    manage = multiprocessing.Manager()
    # 通过manage创建一个特殊类型的dict,供进程之间进行使用
    dic = manage.dict()
    print("没有修改之前的dic:",dic)
    for i in range(10):
        p = multiprocessing.Process(target=f1, args=(i, dic))
        p.start()
        p.join()
    print("修改之后的dic:",dic)

结果:
没有修改之前的dic: {}
修改之后的dic: {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9}

 

二.线程

   线程是程序最下的执行单元,他本质上也是一个进程,只不过是把进程更加的细微化的一个东西,也是用来执行程序的。

  1. 创建线程

# 线程的创建和进程的创建都差不多,因为从形式上来将线程就是进程
# 下面的方法和进程的方法是一样的,就是把daemon变成了setDaemon而已
if __name__ == "__main__":
    # 创建线程foo函数为要用子线程执行的函数,args为传递的参数
    thread = threading.Thread(target=foo, args=(1, ))
    # 启动线程
    thread.start()
    # 子线程等的最长时间
    thread.join(5)
    # 设置主进程完成之后是否要等待子线程完成,默认是不等待的
    thread.setDaemon(True)
 1 # 下面这段代码是没有结果的,因为线程和进程不太一样,线程默认是不等待子线程的
 2 import threading
 3 import time
 4 # 执行的函数
 5 def foo(s1):
 6     time.sleep(1)
 7     print(s1)
 8 
 9 if __name__ == "__main__":
10     thread = threading.Thread(target=foo, args=(1, ))
11     thread.start()
12 
13 # 修改成下面这段代码,就可以显示结果了,
14 import threading
15 import time
16 # 执行的函数
17 def foo(s1):
18     time.sleep(1)
19     print(s1)
20 
21 if __name__ == "__main__":
22     thread = threading.Thread(target=foo, args=(1, ))
23     thread.setDaemon(False)
24     thread.start()
事例一setDaemon
 1 import threading
 2 import time
 3 
 4 # 执行的函数
 5 def foo(s1):
 6     time.sleep(1)
 7     print(s1)
 8 
 9 if __name__ == "__main__":
10     for i in range(5):
11         thread = threading.Thread(target=foo, args=(i, ))
12         thread.start()
13         thread.join(2)
事例二join

  2. Rlock模块

    Rlock模块从名字就可以看出来是一个锁模块,我们都知道线程之间是内存共享的,因此当两个线程同时修改某个值的时候,就会出现脏值(也就是我们预期不到的值),因为我们不知道到底哪个线程修改的有效,因此这个模块就应运而生了,当我们想去修改某个值的时候,就可以用到锁模块,把值锁定起来

 1 # 其实这个例子看不出来数据的混乱。。。。
 2 # 只是简单的说了一下rlock模块的使用方法
 3 import threading
 4 import time
 5 
 6 # 创建一个全局变量,要运用线程对其进行修改
 7 num = []
 8 # 创建一个锁对象
 9 lock = threading.RLock()
10 # 执行的函数
11 def foo(s1):
12     # 加锁
13     # lock.acquire()
14     global num
15     num.append(s1)
16     print(num)
17     # 释放锁
18     # lock.release()
19 if __name__ == "__main__":
20     for i in range(40):
21         thread = threading.Thread(target=foo, args=(i, ))
22         thread.start()
23     print(num)
rlock

  3. event模块

    event模块其实就是暂停的意思,当我们使用了此模块之后,线程就会停在此处,当我们设置了相应的值之后,就会继续执行。

 1 import threading
 2 import time
 3 
 4 # 创建一个全局变量,要运用线程对其进行修改
 5 num = []
 6 # 创建一个锁对象
 7 lock = threading.RLock()
 8 event = threading.Event()
 9 # 执行的函数
10 def foo(s1):
11     # 加锁
12     lock.acquire()
13     # 线程在此暂停(红灯)
14     event.wait()
15     global num
16     num.append(s1)
17     print(num)
18     # 释放锁
19     lock.release()
20 if __name__ == "__main__":
21     for i in range(5):
22         thread = threading.Thread(target=foo, args=(i, ))
23         thread.start()
24     event.clear()   # 设置为红灯
25     inp = input("输入q继续:")
26     if inp == 'q':
27         # 如果输入的为q,就把event的等待状态改变,继续执行
28         event.set() 
29 
30 
31 结果输出
32 输入True继续:q
33 [0]
34 [0, 1]
35 [0, 1, 2]
36 [0, 1, 2, 3]
37 [0, 1, 2, 3, 4]
event+lock之后的状态
 1 import threading
 2 import time
 3 
 4 # 创建一个全局变量,要运用线程对其进行修改
 5 num = []
 6 # 创建一个锁对象
 7 lock = threading.RLock()
 8 event = threading.Event()
 9 # 执行的函数
10 def foo(s1):
11     # 加锁
12     # lock.acquire()
13     # 线程在此暂停(红灯)
14     event.wait()
15     global num
16     num.append(s1)
17     print(num)
18     # 释放锁
19     # lock.release()
20 if __name__ == "__main__":
21     for i in range(5):
22         thread = threading.Thread(target=foo, args=(i, ))
23         thread.start()
24     event.clear()   # 设置为红灯
25     inp = input("输入q继续:")
26     if inp == 'q':
27         # 如果输入的为q,就把event的等待状态改变,继续执行
28         event.set()
29 
30 输出结果:
31 输入q继续:q
32 [0]
33 [0, 2]
34 [0, 2, 1]
35 [0, 2, 1, 4]
36 [0, 2, 1, 4, 3]
event模型

  4. 生产者消费者模型(queue模块)

    生产者消费者模型其实说的就是队列,队列我们只需要记住先进先出就可以了。

# 导入队列的模块
import queue
# 创建一个队列,队列的长度最多为5
obj = queue.Queue(5)
# 从队列中获取值,如果队列为空,则等待
obj.get()
# 从队列中获取值,如果队列为空,则放弃取值(不等待)
obj.get_nowait()
# 给队列中上传一个值
obj.put("value")

  5. 线程池

    在Python中默认没有创建线程池的方法,因此在此处总结了wupeiqi老师的两个方法,方法的地址如下  

    http://www.cnblogs.com/wupeiqi/articles/4839959.html

    这段代码的有些地方是比较难懂的,主要的原因是之前写的代码都是顺序执行的,而对于线程和进程而言,都是可以并发执行的,因此对于执行流还是需要注意的。

 1 import queue
 2 import threading
 3 import time
 4 
 5 class ThreadPool:
 6     def __init__(self, max_num):
 7         self.ThreadQueue = queue.Queue(max_num)
 8         for i in range(max_num):
 9             self.ThreadQueue.put(threading.Thread)
10     def get_Thread(self):
11         return self.ThreadQueue.get()
12 
13     def add_Thread(self):
14         self.ThreadQueue.put(threading.Thread)
15 
16 def func(pool, args):
17     time.sleep(2)
18     print(args)
19     pool.add_Thread()
线程池实现--简单的方法
  1 # -*- coding:utf-8 -*-
  2 # zhou
  3 # 2017/7/5
  4 
  5 import threading
  6 import queue
  7 import time
  8 
  9 # 列表退出标志位
 10 StopEvent = object()
 11 
 12 class ThreadPool:
 13     def __init__(self, max_num):
 14         # 创建一个空的队列用来存放任务而不是线程
 15         self.q = queue.Queue()
 16         # 设置空闲的线程数为0
 17         self.free_list = []
 18         # 已经创建的线程数
 19         self.generate_list = []
 20         # 创建线程的最大个数
 21         self.max_num = max_num
 22         # 创建任务列表为空
 23         self.task = []
 24         self.terminal_flag = False
 25 
 26     def apply(self, target, args, callback=None):
 27         # 得到任务列表
 28         task = (target, args, callback, )
 29         # print('***', args)
 30         # 把任务列表加入队列中
 31         self.q.put(task)
 32         # 去执行
 33         if len(self.free_list) == 0 and len(self.generate_list) < self.max_num:
 34             # 如果没有空闲的线程并且创建的线程数小于最大线程数,就创建一个线程
 35             self.generate_thread()
 36 
 37     def generate_thread(self):
 38         t = threading.Thread(target=self.run)
 39         t.start()
 40 
 41     def run(self):
 42         current_thread = threading.currentThread
 43         self.generate_list.append(current_thread)
 44         event = self.q.get()
 45         while event != StopEvent:
 46             # 是任务,解开任务包,执行任务
 47             func1, argument, func2 = event
 48             # print("++",argument)
 49             try:
 50                 ret = func1(*argument)
 51                 state = True
 52             except Exception as e:
 53                 state = False
 54                 ret = e
 55             if func2 is not None:
 56                 try:
 57                     func2(state, ret)
 58                 except Exception as e:
 59                     pass
 60             if not self.terminal_flag:
 61                 self.free_list.append(current_thread)
 62                 event = self.q.get()
 63                 self.free_list.remove(current_thread)
 64             else:
 65                 event = StopEvent
 66         else:
 67             # 不是任务,就移除
 68             self.generate_list.remove(current_thread)
 69 
 70     def close(self):
 71         # StopEvent作为循环结束的标志,有多少个线程就会给他创建多少个标志位
 72         num = len(self.generate_list)
 73         while num:
 74             self.q.put(StopEvent)
 75             num -= 1
 76 
 77     def terminal(self):
 78         self.terminal_flag = True
 79         while self.generate_list:
 80             self.q.put(StopEvent)
 81         # self.close()
 82         self.q.empty()
 83 # 执行函数
 84 def foo(s1):
 85     # time.sleep(0.5)
 86     print(s1)
 87 # 回调函数
 88 def f2(state, s2):
 89     print(s2)
 90 
 91 if __name__ == "__main__":
 92     # 创建一个线程池
 93     pool = ThreadPool(5)
 94     for i in range(40):
 95         # 应用线程池
 96         # print('___',i)
 97         pool.apply(target=foo, args=(i, ))
 98     time.sleep(4)
 99     pool.terminal()
100 
101     
线程池实现--复杂的方法

 

三.协程

  协程是什么呢?协程其实就是微线程,如下图,协程一般用在web页面请求上面,使用协程要导入模块gevent,下面贴一个简单的使用例子

 1 # -*- coding:utf-8 -*-
 2 # zhou
 3 # 2017/7/5
 4 import gevent
 5 import requests
 6 
 7 def f1(url):
 8     requests.get(url)
 9 
10 gevent.joinall([
11     gevent.spawn(f1, "https://www.baidu.com/"),
12     gevent.spawn(f1, "http://www.sohu.com/"),
13 ]
14 )
协程使用方法

 

四. 上下文切换(contextlib)

  其实这个上下文切换和装饰器有点类似,也是在一个操作的前后在去加上一点操作。

  下面代码执行流程

  

import contextlib

@contextlib.contextmanager
def file_open(file_name, mode):
    f = open(file_name, mode)
    try:
        yield f
    finally:
        f.close()

with file_open('te', 'r') as obj_f:
    print(obj_f.read())

 

posted @ 2017-07-05 12:14  沉沦的罚  阅读(288)  评论(0编辑  收藏  举报