[leetcode]Maximum Subarray

Maximum Subarray

 Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.

click to show more practice.

More practice:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

算法思路:

思路1:最土的算法,求出所有的i ~ j的和,继而求出最大值。复杂度O(n^2)

 

思路2:一维dp,空间可以压缩到O(1)。具体思想看代码:

 1 public class Solution {
 2     public int maxSubArray(int[] a) {
 3         if(a == null || a.length == 0) return 0;
 4         int max = a[0];
 5         int tem = 0;
 6         for(int i = 0; i < a.length; i++){
 7             tem += a[i];
 8             max = Math.max(tem,max);
 9             tem = Math.max(tem,0);
10         }
11         return max;
12     }
13 }
View Code

 

思路3:分治。对于每次递归,将数组分半,最大和可能存在

  1. 完全在左面部分(递归求解)
  2. 完全在右面部分(递归求解)
  3. 横跨左右两个部分(从中间(必须包含中间元素,否则左右无法连接)向两边加,记录最大值)

代码如下:

 1 public class Solution {
 2      public int maxSubArray(int[] a) {
 3            if(a == null || a.length == 0) return 0;
 4            return maxSubArray(a,0,a.length - 1);
 5        }
 6        private int maxSubArray(int[] a,int begin ,int end){
 7            if(begin == end) return a[begin];
 8            int mid = (begin + end) >> 1;
 9            int left = maxSubArray(a, begin, mid);
10            int right = maxSubArray(a, mid + 1, end);
11            int leftHalf = 0,rightHalf = 0;
12            int leftMax = Integer.MIN_VALUE,rightMax = Integer.MIN_VALUE;
13            for(int i = mid + 1; i <= end; i++){
14                rightHalf += a[i];
15                rightMax = Math.max(rightHalf, rightMax);
16            }
17            for(int i = mid; i >= begin; i--){
18                leftHalf += a[i];
19                leftMax = Math.max(leftMax, leftHalf);
20            }
21            return Math.max(rightMax + leftMax, Math.max(left, right));
22        }
23 }

分治法也是二分法的一种实现。

 

posted on 2014-08-10 19:47  喵星人与汪星人  阅读(202)  评论(0编辑  收藏  举报