一个完整的大作业--‘’数据观”官方网站数据爬取
1.选一个自己感兴趣的主题。
‘’数据观”官方网站数据爬取,网页网址为‘http://www.cbdio.com/node_2568.htm’
2.网络上爬取相关的数据。
import requests from bs4 import BeautifulSoup
url = 'http://www.cbdio.com/node_2568.htm' res = requests.get(url) res.encoding = 'utf-8' soup = BeautifulSoup(res.text, 'html.parser') for items in soup.select('li'): if len(items.select('.cb-media-title'))>0: title=items.select('.cb-media-title')[0].text#标题 url1=items.select('a')[0]['href'] url2='http://www.cbdio.com/{}'.format(url1)#链接
resd=requests.get(url2) resd.encoding='utf-8' soupd=BeautifulSoup(resd.text,'html.parser') source=soupd.select('.cb-article-info')[0].text.strip()#来源 content=soupd.select('.cb-article')[0].text#内容 print("################################################################################") print('标题:',title,'\t链接:',url2,source)
3.进行文本分析,生成词云。
url='http://www.cbdio.com/node_2568.htm' res = requests.get(url) res.encoding = 'utf-8' soup = BeautifulSoup(res.text, 'html.parser') contentls=[] for item in soup.select('li'): if len(item.select('.cb-media-title'))>0: url1=item.select('a')[0]['href'] url2='http://www.cbdio.com/{}'.format(url1) resd=requests.get(url2) resd.encoding='utf-8' soupd=BeautifulSoup(resd.text,'html.parser') cont=soupd.select('.cb-article')[0].text#内容 contentls.append(cont) print(contentls) words=jieba.lcut(content) ls=[] counts={} for word in words: ls.append(word) if len(word)==1: continue else: counts[word]=counts.get(word,0)+1 items = list(counts.items()) items.sort(key = lambda x:x[1], reverse = True) for i in range(10): word , count = items[i] print ("{:<5}{:>2}".format(word,count)) #词云制作 from wordcloud import WordCloud import matplotlib.pyplot as plt cy = WordCloud(font_path='msyh.ttc').generate(content) plt.imshow(cy, interpolation='bilinear') plt.axis("off") plt.show()
4.对文本分析结果解释说明。
通过以上数据显示,该中国大数据官网主要的话题是数据以及交易 和政府、企业、专家等。
5.写一篇完整的博客,附上源代码、数据爬取及分析结果,形成一个可展示的成果。
import requests from bs4 import BeautifulSoup def getTheContent(url1): res = requests.get(url1) res.encoding = 'utf-8' soup = BeautifulSoup(res.text, 'html.parser') item={} item['title']=soup.select('.cb-article-title')[0].text#标题 item['url']=url1#链接 resd=requests.get(item['url']) resd.encoding='utf-8' soupd=BeautifulSoup(resd.text,'html.parser') item['source']=soupd.select('.cb-article-info')[0].text.strip()#来源 item['content']=soupd.select('.cb-article')[0].text#内容 return(item) def getOnePage(pageurl): res = requests.get(pageurl) res.encoding = 'utf-8' soup = BeautifulSoup(res.text, 'html.parser') itemls=[] for item in soup.select('li'): if len(item.select('.cb-media-title'))>0: url1=item.select('a')[0]['href'] url2='http://www.cbdio.com/{}'.format(url1) itemls.append(getTheContent(url2)) return(itemls) #结巴词频统计 import jieba url='http://www.cbdio.com/node_2568.htm' res = requests.get(url) res.encoding = 'utf-8' soup = BeautifulSoup(res.text, 'html.parser') contentls=[] for item in soup.select('li'): if len(item.select('.cb-media-title'))>0: url1=item.select('a')[0]['href'] url2='http://www.cbdio.com/{}'.format(url1) resd=requests.get(url2) resd.encoding='utf-8' soupd=BeautifulSoup(resd.text,'html.parser') cont=soupd.select('.cb-article')[0].text#内容 contentls.append(cont) print(contentls) ##for each in contentls: ## f = open("1.txt", 'r', 'utf-8') ## f.write(each) #### print(each) ## f.close() ## print('#') ##fo=open('1.txt','r') ##content=fo.read() ## content=str(contentls) words=jieba.lcut(content) ls=[] counts={} for word in words: ls.append(word) if len(word)==1: continue else: counts[word]=counts.get(word,0)+1 items = list(counts.items()) items.sort(key = lambda x:x[1], reverse = True) for i in range(10): word , count = items[i] print ("{:<5}{:>2}".format(word,count)) #词云制作 from wordcloud import WordCloud import matplotlib.pyplot as plt cy = WordCloud(font_path='msyh.ttc').generate(content) plt.imshow(cy, interpolation='bilinear') plt.axis("off") plt.show() #excel导出、数据库存储 import re import pandas import sqlite3 itemtotal=[] for i in range(2,3): listurl='http://www.cbdio.com/node_2568.htm' itemtotal.extend(getOnePage(listurl)) df =pandas.DataFrame(itemtotal) df.to_excel('BigDataItems.xlsx') with sqlite3.connect('BigDataItems.sqlite') as db: df.to_sql('BigDataItems',con=db) print('输出成功!!')