huangfox

冰冻三尺,非一日之寒!

  博客园 :: 首页 :: 博问 :: 闪存 :: 新随笔 :: 联系 :: 订阅 订阅 :: 管理 ::

一)定义

堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。


(1)用大根堆排序的基本思想
① 先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区
② 再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录R[n]交换,由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys≤R[n].key
③ 由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。然后再次将R[1..n-1]中关键字最大的记录R[1]和该区间的最后一个记录R[n-1]交换,由此得到新的无序区R[1..n-2]和有序区R[n-1..n],且仍满足关系R[1..n-2].keys≤R[n-1..n].keys,同样要将R[1..n-2]调整为堆。

 

二)堆排序的实现(java)

package com.fox;

import java.util.Random;

public class HeapSort {

	public static void sort(int[] a) {
		int len = a.length;
		for (int i = 0; i < a.length - 1; i++) {
			buildMaxHeap(a, len - 1 - i);
			// 将堆顶元素与堆的最底层最右边的元素(即未排序部分的最后一个元素)交换。
			swap(a, 0, len - 1 - i);
		}
	}

	private static void swap(int[] a, int i, int j) {
		int temp = a[i];
		a[i] = a[j];
		a[j] = temp;
	}

	private static void buildMaxHeap(int[] a, int lastIndex) {
		int lf = (lastIndex - 1) / 2;// 最后一个非叶子节点的位置
		for (int i = lf; i >= 0; i--) {
			int k = i;
			while (2 * k + 1 <= lastIndex) {
				int maxIndex = 2 * k + 1;// maxIndex记录当前节点左右子节点的最大值的位置
				if (maxIndex < lastIndex) {// 判断是否有右节点
					if (a[maxIndex] < a[maxIndex + 1])
						maxIndex++;
				}
				if (a[k] < a[maxIndex]) {
					swap(a, k, maxIndex);
					k = maxIndex;
				} else {
					break;
				}
			}
		}
	}

	/**
	 * @param args
	 */
	public static void main(String[] args) {
		int[] a = new int[100000];
		Random random = new Random();
		for (int i = 0; i < a.length; i++) {
			a[i] = random.nextInt(100000);
		}
		a = new int[] { 6, 7, 51, 2, 52, 8 };
		long bt = System.currentTimeMillis();
		HeapSort.sort(a);
		System.out.println(System.currentTimeMillis() - bt);
		for (int a_ : a)
			System.out.println(a_);
	}

}

  

堆排序属于选择排序,选择排序的关键是找到最值,怎么提高找到最值的效率就成为选择排序的关键。

 

posted on 2012-06-30 18:43  huangfox  阅读(655)  评论(0编辑  收藏  举报