算法学习--二叉查找树

     创建二叉查找树、查找二叉树中的某个节点、删除某个节点、

     新增节点、查找某个节点的父节点、查找最小节点

     对二叉树进行前序遍历、中序遍历、后序遍历

     前序遍历,也叫先根遍历,遍历的顺序是,根,左子树,右子树  
     中序遍历,也叫中根遍历,顺序是 左子树,根,右子树

    后序遍历,也叫后根遍历,遍历顺序,左子树,右子树,根

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace SuanFa
{
public class Order
{
//创建二分查找树
public Tree CreateBinaryTree(int[] A)
{
if (A == null || A.Length == 0)
{
return null;
}

Tree root
= new Tree(A[0]); //根节点 相当于表头指针
Tree treeNode,temp;//要添加的节点和中间节点

for (int i = 1; i < A.Length; i++)
{
temp
= root;
treeNode
= new Tree(A[i]);
AddTreeNode(temp, treeNode);
}

return root;
}

//添加树节点
private void AddTreeNode(Tree tree, Tree node)
{
if (node.Text < tree.Text)//添加左子节点
{
if (tree.LeftTree.Count == 0)
{
tree.LeftTree.Add(node);
}
else {
AddTreeNode(tree.LeftTree[
0], node);
}
}
else if (node.Text > tree.Text)//添加右子节点
{
if (tree.RightTree.Count == 0)
{
tree.RightTree.Add(node);
}
else
{
AddTreeNode(tree.RightTree[
0], node);
}
}
}

//查找某个节点
public Tree Find(Tree root,int text) {
if (root == null)//如果当前节点为null 返回null
{
return null;
}

if (root.Text == text)//如果等于当前节点就返回当前节点
{
return root;
}

if (root.LeftTree.Count > 0)//递归左子树
{
if (root.Text > text)
{
return Find(root.LeftTree[0],text);
}
}

if (root.RightTree.Count > 0)//递归右子树
{
if (root.Text<text)
{
return Find(root.LeftTree[0], text);
}
}

return null;//没找到返回null
}

//查找某个节点的父节点
public Tree FindF(Tree root, int text)
{
if (root == null)//如果当前节点为null 返回null
{
return null;
}

if (root.LeftTree.Count > 0)
{
if (root.LeftTree[0].Text == text)//如果等于当前节点的左子节点就返回当前节点
{
return root;
}
if (root.Text > text)//递归左子树
{
return FindF(root.LeftTree[0], text);
}
}

if (root.RightTree.Count > 0)
{
if (root.RightTree[0].Text == text)//如果等于当前节点的右子节点就返回当前节点
{
return root;
}
if (root.Text < text)//递归右子树
{
return FindF(root.RightTree[0], text);
}

}

return null;//没找到返回null
}

//前序遍历
public int DLR(Tree tree,List<int> list)
{
if (tree == null || list == null)
{
return 0;
}

list.Add(tree.Text);
//根节点

if (tree.LeftTree.Count > 0) //先遍历左子树
{
DLR(tree.LeftTree[
0],list);
}

if (tree.RightTree.Count > 0) //右子树
{
DLR(tree.RightTree[
0], list);
}

if (list.Count > 0)
return 1;
return 0;
}

//后序遍历
public int LRD(Tree tree, List<int> list)
{
if (tree == null || list == null)
{
return 0;
}


if (tree.LeftTree.Count > 0) //先遍历左子树
{
LRD(tree.LeftTree[
0], list);
}

if (tree.RightTree.Count > 0) //右子树
{
LRD(tree.RightTree[
0], list);
}

list.Add(tree.Text);
//根节点

if (list.Count > 0)
return 1;
return 0;
}

//中序遍历
public int LDR(Tree tree, List<int> list)
{
if (tree == null || list == null)
{
return 0;
}

if (tree.LeftTree.Count > 0) //先遍历左子树
{
LDR(tree.LeftTree[
0], list);
}

list.Add(tree.Text);
//根节点

if (tree.RightTree.Count > 0) //右子树
{
LDR(tree.RightTree[
0], list);
}

if (list.Count > 0)
return 1;
return 0;
}

//删除节点
//1:节点不存在
//2:节点存在且没有子树
//3:节点存在且有左子树,用以要删除节点为根节点树的最小节点代替当前节点
//4;节点存在且只有右子树,用药删除节点的右子节点代替当前节点
public Tree Delete(Tree tree, int text)
{
if (tree == null)
{
return null;
}
Tree newTree
= tree;
//要删除节点的父节点
Tree delFNode = FindF(newTree, text);

//要删除的节点
Tree delNode;
bool isleft = true;//标识被删节点是其所在树的左子节点还是右子节点

if (delFNode == null)//要删除的节点父节点为空有两种情况。1不存在;2是根节点
{
delNode
= Find(newTree, text);
if (delNode == null)//不存在
{
return newTree;
}
Tree tmp;
if (delNode.LeftTree.Count > 0)//存在左子树
{
tmp
= FindMin(delNode);
Tree tmpF
= FindF(delNode, tmp.Text);
tmpF.LeftTree.Remove(tmp);
tmp.LeftTree.Add(delNode.LeftTree[
0]);
if (delNode.RightTree.Count > 0)
{
tmp.RightTree.Add(delNode.RightTree[
0]);
}
newTree
= tmp;
}
else if (delNode.RightTree.Count > 0)//只有右子树
{
newTree
= delNode.RightTree[0];
}

return newTree;

}
//要删除的节点是左子树
else if (delFNode.LeftTree.Count > 0 && delFNode.LeftTree[0].Text == text)
{
delNode
= delFNode.LeftTree[0];
isleft
= true;
}
//要删除的节点是右子树
else if (delFNode.RightTree.Count > 0 && delFNode.RightTree[0].Text == text)
{
delNode
= delFNode.RightTree[0];
isleft
= false;
}
else//要删除的节点不存在
{
return newTree;
}

Tree temp;
//如果存在左子树,就用左子树的最小节点取代要删除的节点,并删除这个最小节点
if (delNode.LeftTree.Count > 0)
{
temp
= FindMin(delNode);

Tree tempDelNode
= delNode;
while (tempDelNode.LeftTree.Count > 0)
{
tempDelNode
= tempDelNode.LeftTree[0];
}
if (temp.Text != delNode.LeftTree[0].Text)
{
temp.LeftTree.Add(delNode.LeftTree[
0]);
}
delNode.LeftTree.Remove(tempDelNode);

//把要删除节点的右子树作为最小节点的右子树
if (delNode.RightTree.Count > 0)
{
temp.RightTree.Add(delNode.RightTree[
0]);
}

if (isleft)
{
delFNode.LeftTree.Add(temp);
delFNode.LeftTree.Remove(delNode);
}
else
{
delFNode.RightTree.Add(temp);
delFNode.RightTree.Remove(delNode);
}
}
else if (delNode.RightTree.Count > 0)
{
delFNode.RightTree.Add(delNode.RightTree[
0]);
}

return newTree;
}

//查找最小节点
public Tree FindMin(Tree tree)
{
if (tree == null)
{
return null;
}

//如果当前节点没有左子树就返回他自己
if (tree.LeftTree.Count == 0)
{
return tree;
}

//递归左子树
return FindMin(tree.LeftTree[0]);

}
}
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace SuanFa
{
public class Tree
{
//显示的值
public int Text
{
set;
get;
}

//构造函数
public Tree(int text) {
this.Text = text;
if (LeftTree == null)
{
LeftTree
= new List<Tree>();
}
if (RightTree == null)
{
RightTree
= new List<Tree>();
}
}

//左子树
public List<Tree> LeftTree
{
set;
get;
}

//右子树
public List<Tree> RightTree
{
set;
get;
}
}
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace SuanFa
{
class Program
{
static void Main(string[] args)
{
int[] B = new int[] { 50,25,75,15,35,65,85,10,20,30,40,60,70,80,90 };
Order order
= new Order();
Tree tree
= order.CreateBinaryTree(B);

Console.Write(
"原先数组:");
foreach (int i in B)
{
Console.Write(i.ToString()
+ " ");
}
Console.WriteLine();
Console.Write(
"----------------------------形成二叉查找树--------------------------");
Console.WriteLine();
Console.WriteLine(
"删除前:");
Console.WriteLine();
Show(B, order, tree);
Console.WriteLine();
Console.WriteLine();
Tree newTree
= order.Delete(tree,50);
Console.WriteLine(
"删除跟节点50后:");
Console.WriteLine();
Show(B, order, newTree);
Console.WriteLine();
Console.WriteLine();
Tree newTree1
= order.Delete(newTree, 65);
Console.WriteLine(
"删除65后:");
Console.WriteLine();
Show(B, order, newTree1);
Console.ReadLine();
}

private static void Show(int[] B, Order order, Tree tree)
{
List
<int> listDlr = new List<int>();
if (order.DLR(tree, listDlr) > 0)
{
Console.Write(
"前序遍历:");
foreach (int i in listDlr)
{
Console.Write(i.ToString()
+ " ");
}
Console.WriteLine();
Console.WriteLine();
}

List
<int> listLrd = new List<int>();
if (order.LRD(tree, listLrd) > 0)
{
Console.Write(
"后序遍历:");
foreach (int i in listLrd)
{
Console.Write(i.ToString()
+ " ");
}
Console.WriteLine();
Console.WriteLine();
}

List
<int> listLdr = new List<int>();
if (order.LDR(tree, listLdr) > 0)
{
Console.Write(
"中序遍历:");
foreach (int i in listLdr)
{
Console.Write(i.ToString()
+ " ");
}
}
}
}
}
posted @ 2010-11-19 11:55  啊汉  阅读(809)  评论(0编辑  收藏  举报