leetcode[94] Unique Binary Search Trees
给定n,那么从1,2,3...n总共可以构成多少种二叉查找数呢。例如给定3
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
思路:
我们考虑头结点i,那么所有比i小的都在i的左边,比i大的都在i的右边。也就是以i为开头的是i的左边的可能*i右边的可能,然后遍历i从1到n,所有可能相加就是我们的结果。
由公式 h[n] = h[0]*h[n-1] + h[1]*h[n-1] + ... + h[n-1]*h[0]; 可得如下:
class Solution { public: int numTrees(int n) { if (n == 1) return 1; vector<int> ans(n+1); ans[0] = 1; ans[1] = 1; for (int i = 2; i <= n; i++) for (int j = 0; j < i; j++) { ans[i] += ans[j]*ans[i-j-1]; } return ans[n]; } };
其实这是一个卡特兰数,直接用公式C2n选n除以n+1则如下:
class Solution { public: int numTrees(int n) { if (n == 1) return 1; long long denominator = 1, numerator = 1; int cnt = 2 * n; while(cnt > n) denominator *= cnt--; while(cnt > 0) numerator *= cnt--; return denominator/numerator/(n+1); } };
还可以用递归:
class Solution { public: int numTrees(int n) { return numTrees(1,n); } int numTrees(int start, int end) { if (start >= end) return 1; int totalNum = 0; for (int i=start; i<=end; ++i) totalNum += numTrees(start,i-1)*numTrees(i+1,end); return totalNum; } };