Tensorflow学习(练习)—使用inception做图像识别

import os
import tensorflow as tf
import numpy as np
import re

from PIL import Image
import matplotlib.pyplot as plt

print("hello")

class NodeLookup(object):
def __init__(self):
label_lookup_path = "F:\Tensorflow Project\inception-2015-12-05\imagenet_2012_challenge_label_map_proto.pbtxt"
uid_lookup_path="F:\Tensorflow Project\inception-2015-12-05\imagenet_synset_to_human_label_map.txt"
self.node_lookup=self.load(label_lookup_path,uid_lookup_path)

def load(self,label_lookup_path,uid_lookup_path):
  #加载分类字符串
  proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines()
  uid_to_human = {}
  #读取数据
  for line in proto_as_ascii_lines:
    #去掉换行符
    line = line.strip('\n')
    #根据'/t'分割
    parsed_items = line.split('\t')
    #获取分类编号
    uid = parsed_items[0]
    #获取分类名称
    human_string = parsed_items[1]
    #保存编号
    uid_to_human[uid] = human_string

    #加载分类字符串
    proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines()
    node_id_to_uid = {}

  for line in proto_as_ascii:
    if line.startswith(' target_class:'):
    #获取分类编号
    #target_class = int(line.split(': ')[1])
    target_class = int(line.split(': ')[1])
    if line.startswith(' target_class_string:'):
      #获取编号字符串
      target_class_string = line.split(': ')[1]
      #保存分类编号
      node_id_to_uid[target_class] = target_class_string[1:-2]

    #建立分类编号
    node_id_to_name = {}
    for key,val in node_id_to_uid.items():
      #获取分类名称
      name = uid_to_human[val]
      #建立分类编号
      node_id_to_name[key] = name
      return node_id_to_name

  #传入分类器编号返回分类名称
  def id_to_string(self,node_id):
    if node_id not in self.node_lookup:
      return ''
    return self.node_lookup[node_id]

#创建一个图用来存储训练好的模型
with tf.gfile.FastGFile('F:\Tensorflow Project\inception-2015-12-05\classify_image_graph_def.pb','rb') as f:
  graph_def = tf.GraphDef()
  graph_def.ParseFromString(f.read())
  tf.import_graph_def(graph_def,name="")

with tf.Session() as sess:
  softmax_tensor = sess.graph.get_tensor_by_name("softmax:0")
  #遍历目录
  for root,dirs,files in os.walk('F:\Tensorflow Project\images0815'):
    for file in files:
      #Tensorflow载入图片
      image_data = tf.gfile.FastGFile(os.path.join(root,file),'rb').read()
      #执行函数,传入jpg格式图片计算并得到结果
      predictions = sess.run(softmax_tensor,{'DecodeJpeg/contents:0':image_data})
      #把得到的结果转成一维
      predictions = np.squeeze(predictions)

      #打印图片路径及名称
      image_path = os.path.join(root,file)
      print(image_path)
      #显示图片
      img = Image.open(image_path)
      plt.imshow(img)
      plt.axis('off')
      plt.show()

      #排序
      top_k = predictions.argsort()[-5:][::-1]
      node_lookup = NodeLookup()
      for node_id in top_k:
        #获取分类名称
        human_string = node_lookup.id_to_string(node_id)
        #获取分类的置信度
        score = predictions[node_id]
        print("%s (score = %.5f)"%(human_string,score))
      print()

 

运行效果

posted @ 2018-08-15 17:44  西北逍遥  阅读(966)  评论(0编辑  收藏  举报