Dijkstra算法
Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。
Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。
其基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。
初始时,S中仅含有源。设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist作必要的修改。一旦S包含了所有V中顶点,dist就记录了从源到所有其它顶点之间的最短路径长度。
例如,对下图中的有向图,应用Dijkstra算法计算从源顶点1到其它顶点间最短路径的过程列在下表中。
主题好好理解上图!
以下是具体的实现(C/C++):
#include <iostream>
#include<fstream>
using namespace std;
const int maxnum = 100;
const int maxint = 999999;
void Dijkstra(int n, int v, int *dist, int *prev, int c[maxnum][maxnum])
{
bool s[maxnum]; // 判断是否已存入该点到S集合中
for(int i=1; i<=n; ++i)
{
dist[i] = c[v][i];
s[i] = 0; // 初始都未用过该点
if(dist[i] == maxint)
prev[i] = 0;
else
prev[i] = v;
}
dist[v] = 0;
s[v] = 1;
// 依次将未放入S集合的结点中,取dist[]最小值的结点,放入结合S中
// 一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度
for(i=2; i<=n; ++i)
{
int tmp = maxint;
int u = v;
// 找出当前未使用的点j的dist[j]最小值
for(int j=1; j<=n; ++j)
if((!s[j]) && dist[j]<tmp)
{
u = j; // u保存当前邻接点中距离最小的点的号码
tmp = dist[j];
}
s[u] = 1; // 表示u点已存入S集合中
// 更新dist
for( j=1; j<=n; ++j)
if((!s[j]) && c[u][j]<maxint)
{
int newdist = dist[u] + c[u][j];
if(newdist < dist[j])
{
dist[j] = newdist;
prev[j] = u;
}
}
}
}
void searchPath(int *prev,int v, int u)
{
int que[maxnum];
int tot = 1;
que[tot] = u;
tot++;
int tmp = prev[u];
while(tmp != v)
{
que[tot] = tmp;
tot++;
tmp = prev[tmp];
}
que[tot] = v;
for(int i=tot; i>=1; --i)
if(i != 1)
cout << que[i] << " -> ";
else
cout << que[i] << endl;
}
int main()
{
freopen("input.txt", "r", stdin);
// 各数组都从下标1开始
int dist[maxnum]; // 表示当前点到源点的最短路径长度
int prev[maxnum]; // 记录当前点的前一个结点
int c[maxnum][maxnum]; // 记录图的两点间路径长度
int n, line; // 图的结点数和路径数
// 输入结点数
cin >> n;
// 输入路径数
cin >> line;
int p, q, len; // 输入p, q两点及其路径长度
// 初始化c[][]为maxint
for(int i=1; i<=n; ++i)
for(int j=1; j<=n; ++j)
c[i][j] = maxint;
for(i=1; i<=line; ++i)
{
cin >> p >> q >> len;
if(len < c[p][q]) // 有重边
{
c[p][q] = len; // p指向q
c[q][p] = len; // q指向p,这样表示无向图
}
}
for(i=1; i<=n; ++i)
dist[i] = maxint;
for(i=1; i<=n; ++i)
{
for(int j=1; j<=n; ++j)
printf("%8d", c[i][j]);
printf("\n");
}
Dijkstra(n, 1, dist, prev, c);
// 最短路径长度
cout << "源点到最后一个顶点的最短路径长度: " << dist[n] << endl;
// 路径
cout << "源点到最后一个顶点的路径为: ";
searchPath(prev, 1, n);
return 0;
}
/*
输入数据:
5
7
1 2 10
1 4 30
1 5 100
2 3 50
3 5 10
4 3 20
4 5 60
输出数据:
999999 10 999999 30 100
10 999999 50 999999 999999
999999 50 999999 20 10
30 999999 20 999999 60
100 999999 10 60 999999
源点到最后一个顶点的最短路径长度: 60
源点到最后一个顶点的路径为: 1 -> 4 -> 3 -> 5
*/
最短路
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 13799 Accepted Submission(s): 5874
#include<iostream> #include<stdio.h> #include<iomanip> using namespace std; #define N 10000 #define MAX 100000099 int a[N][N]; int dist[N]; void input (int n,int m) { int p,q,len,i,j; for( i=1;i<=n;i++) { for(j=1;j<=n;j++) a[i][j]=MAX; dist[i]=MAX; } for(i=0;i<m;i++) { cin>>p>>q>>len; if(len<a[p][q]) { a[p][q]=len; a[q][p]=len; } } } void dijkstra(int n) { int s[N],newdist; for(int i=1;i<=n;i++) { dist[i]=a[1][i]; s[i]=0; } dist[1]=0; s[1]=1; for(i=2;i<=n;i++) { int j,tem=MAX; int u=1; for(j=2;j<=n;j++) if(!s[j]&&dist[j]<tem) { u=j; tem=dist[j]; } s[u]=1; for(j=2;j<=n;j++) { if(!s[j]&&a[u][j]<MAX) { newdist=dist[u]+a[u][j]; if(newdist<dist[j]) dist[j]=newdist; } } } } int main() { int n,m; while(scanf("%d%d",&n,&m),m||n) { input(n,m); dijkstra(n); cout<<dist[n]<<endl; } return 0; }
//又捡回来了 #include <iostream> #include<string.h> using namespace std; const int Nmax = 104; int a[Nmax][Nmax]; bool visit[Nmax]; int prev[Nmax]; int n; void dijkstra(int v)//不需要打印路径的dijkstra { int cnt=n-1,j,mindis,minid; memset(visit,0,sizeof(visit)/sizeof(bool)); for(j=1; j<=n; j++) { if(a[v][j]==INT_MAX||v==j) prev[j]=0; //路径打印停止的标志 else prev[j]=v; } visit[v]=1; while(cnt--) //n-1次就可以将所有定点加入S中 { //找到距离v点最近的点k mindis=INT_MAX; for(j=1; j<=n; j++) { if(!visit[j]&&a[v][j]<mindis) { mindis=a[v][j]; minid=j; } } visit[minid]=1; //更新集合U中的点 for(j=1; j<=n; j++) { //a[v][minid]+a[minid][j]<a[v][j]会溢出尼玛!!装逼失败早知道不用INT_MAX if(!visit[j]&&a[v][minid]<INT_MAX&&a[minid][j]<INT_MAX&&a[v][minid]+a[minid][j]<a[v][j]) { a[v][j]=a[v][minid]+a[minid][j]; prev[j]=minid; } } } } void printPath(int u) { int path[Nmax]; int tmp=u; while(tmp) { path[prev[tmp]]=tmp; tmp=prev[tmp]; } while(tmp!=u) { cout<<path[tmp]; tmp=path[tmp]; if(tmp!=u) cout<<"->"; } cout<<endl; }int main() { int i,j,w,m; while(cin>>n>>m,n||m) { for(i=1; i<=n; i++) for(j=1; j<=n; j++) { if(i==j) a[i][j]=0; else a[i][j]=INT_MAX; } while(m--) { cin>>i>>j>>w; //a[i][j]=w<a[i][j]?w:a[i][j];有向图重边考虑 a[i][j]=a[j][i]=w<a[i][j]?w:a[i][j];//无向图重边考虑 } dijkstra(1); cout<<a[1][n]<<endl; //printPath(n); } return 0; }