『TensorFlow』pad图片

 tf.pad()文档如下,

pad(tensor, paddings, mode='CONSTANT', name=None, constant_values=0)
    Pads a tensor.
    
    This operation pads a `tensor` according to the `paddings` you specify.
    `paddings` is an integer tensor with shape `[n, 2]`, where n is the rank of
    `tensor`. For each dimension D of `input`, `paddings[D, 0]` indicates how
    many values to add before the contents of `tensor` in that dimension, and
    `paddings[D, 1]` indicates how many values to add after the contents of
    `tensor` in that dimension. If `mode` is "REFLECT" then both `paddings[D, 0]`
    and `paddings[D, 1]` must be no greater than `tensor.dim_size(D) - 1`. If
    `mode` is "SYMMETRIC" then both `paddings[D, 0]` and `paddings[D, 1]` must be
    no greater than `tensor.dim_size(D)`.
    
    The padded size of each dimension D of the output is:
    
    `paddings[D, 0] + tensor.dim_size(D) + paddings[D, 1]`

 实际使用注意,参数paddings元素数(rank)必须和输入维度一一对应,表示该维度前后填充的层数,文档示例验证如下,

import tensorflow as tf
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)

t = tf.constant([[1, 2, 3], [4, 5, 6]])
paddings = tf.constant([[1, 1,], [2, 2]])
# 'constant_values' is 0.
# rank of 't' is 2.
res = tf.pad(t, paddings, "CONSTANT", constant_values=1)  # [[0, 0, 0, 0, 0, 0, 0],
                                                          #  [0, 0, 1, 2, 3, 0, 0],
                                                          #  [0, 0, 4, 5, 6, 0, 0],
                                                          #  [0, 0, 0, 0, 0, 0, 0]]


print(sess.run(res))

'''
tf.pad(t, paddings, "REFLECT")  # [[6, 5, 4, 5, 6, 5, 4],
                                #  [3, 2, 1, 2, 3, 2, 1],
                                #  [6, 5, 4, 5, 6, 5, 4],
                                #  [3, 2, 1, 2, 3, 2, 1]]

tf.pad(t, paddings, "SYMMETRIC")  # [[2, 1, 1, 2, 3, 3, 2],
                                  #  [2, 1, 1, 2, 3, 3, 2],
                                  #  [5, 4, 4, 5, 6, 6, 5],
                                  #  [5, 4, 4, 5, 6, 6, 5]]
'''

 

posted @ 2018-03-15 16:14  叠加态的猫  阅读(785)  评论(0编辑  收藏  举报