『TensorFlow』通过代码理解gan网络_中
『cs231n』通过代码理解gan网络&tensorflow共享变量机制_上
上篇是一个尝试生成minist手写体数据的简单GAN网络,之前有介绍过,图片维度是28*28*1,生成器的上采样使用的是tf.image.resize_image(),不太正规,不过其他部分很标准,值得参考学习。
辨别器:
n,28,28,1 :
卷积 + 激活 + 池化
n,14,14,32 :
卷积 + 激活 + 池化
n,7,7,64 :
reshape
n,7*7*64 :
全连接 + 激活
n,1024 :
全连接
n,1
生成器:
n,100(噪声长度) :全链接
n,3136 :reshape +
批正则化 + 激活
n,56,56,1 :
卷积 + 批正则化 + 激活
n,28,28,50 :插值
n,56,56,50 :
卷积 + 批正则化 + 激活
n,28,28,25 :插值
n,56,56,25 :
卷积 + 激活
n,28,28,1
这是一个尝试生成头像的GAN,输入图片尺寸是64*64*3,由于作者对于tensorflow中网络reuse不熟悉,所以在网络结构上做了很大的改动(妥协),但是生成器正常的使用了conv_transpose,值得参考。
import os import random import numpy as np import tensorflow as tf from PIL import Image # import cv2 import scipy.misc as misc # 读取全部.jpg结尾的文件名 CELEBA_DATE_DIR = 'img_align_celeba' train_images = [] for image_filename in os.listdir(CELEBA_DATE_DIR): if image_filename.endswith('.jpg'): train_images.append(os.path.join(CELEBA_DATE_DIR,image_filename)) # 打乱文件名排序 random.shuffle(train_images) # 设置训练图片数据,包含批大小以及尺寸 batch_size = 64 num_batch = len(train_images) // batch_size IMAGE_SIZE = 64 IMAGE_CHANNEL = 3 # 生成一batch的图片 def get_next_batch(pointer): image_batch = [] images = train_images[pointer * batch_size:(pointer + 1) * batch_size] for img in images: arr = Image.open(img) arr = arr.resize((IMAGE_SIZE,IMAGE_SIZE)) arr = np.array(arr) arr = arr.astype('float32') / 127.5 - 1 # image = cv2.imread(img) # image = cv2.resize(image, (IMAGE_SIZE, IMAGE_SIZE)) # image = image.astype('float32') / 127.5 - 1 image_batch.append(arr) return image_batch # 噪声接受 z_dim = 100 noise = tf.placeholder(tf.float32,[None,z_dim],name='noise') # 训练数据接收 X = tf.placeholder(tf.float32,[batch_size,IMAGE_SIZE,IMAGE_SIZE,IMAGE_CHANNEL],name='X') # 是否在训练阶段的flag接收 train_phase = tf.placeholder(tf.bool) # batch_norm层 # http://stackoverflow.com/a/34634291/2267819 def batch_norm(x,beta,gamma,phase_train,scope='bn',decay=0.9,eps=1e-5): with tf.variable_scope(scope): # beta = tf.get_variable(name='beta', shape=[n_out], initializer=tf.constant_initializer(0.0), trainable=True) # gamma = tf.get_variable(name='gamma', shape=[n_out], # initializer=tf.random_normal_initializer(1.0, stddev), trainable=True) batch_mean,batch_var = tf.nn.moments(x,[0,1,2],name='moments') ema = tf.train.ExponentialMovingAverage(decay=decay) def mean_var_with_update(): ema_apply_op = ema.apply([batch_mean,batch_var]) with tf.control_dependencies([ema_apply_op]): return tf.identity(batch_mean),tf.identity(batch_var) mean,var = tf.cond(phase_train, mean_var_with_update, lambda: (ema.average(batch_mean),ema.average(batch_var))) normed = tf.nn.batch_normalization(x,mean,var,beta,gamma,eps) # https://www.jianshu.com/p/0312e04e4e83 # tf.nn.moments # tf.nn.batch_normalization return normed # 生成器参数初始化 # 权重偏执&batch_normal层参数 generator_variables_dict = { "W_1": tf.Variable(tf.truncated_normal([z_dim,2 * IMAGE_SIZE * IMAGE_SIZE],stddev=0.02),name='Generator/W_1'), "b_1": tf.Variable(tf.constant(0.0,shape=[2 * IMAGE_SIZE * IMAGE_SIZE]),name='Generator/b_1'), 'beta_1': tf.Variable(tf.constant(0.0,shape=[512]),name='Generator/beta_1'), 'gamma_1': tf.Variable(tf.random_normal(shape=[512],mean=1.0,stddev=0.02),name='Generator/gamma_1'), "W_2": tf.Variable(tf.truncated_normal([5,5,256,512],stddev=0.02),name='Generator/W_2'), "b_2": tf.Variable(tf.constant(0.0,shape=[256]),name='Generator/b_2'), 'beta_2': tf.Variable(tf.constant(0.0,shape=[256]),name='Generator/beta_2'), 'gamma_2': tf.Variable(tf.random_normal(shape=[256],mean=1.0,stddev=0.02),name='Generator/gamma_2'), "W_3": tf.Variable(tf.truncated_normal([5,5,128,256],stddev=0.02),name='Generator/W_3'), "b_3": tf.Variable(tf.constant(0.0,shape=[128]),name='Generator/b_3'), 'beta_3': tf.Variable(tf.constant(0.0,shape=[128]),name='Generator/beta_3'), 'gamma_3': tf.Variable(tf.random_normal(shape=[128],mean=1.0,stddev=0.02),name='Generator/gamma_3'), "W_4": tf.Variable(tf.truncated_normal([5,5,64,128],stddev=0.02),name='Generator/W_4'), "b_4": tf.Variable(tf.constant(0.0,shape=[64]),name='Generator/b_4'), 'beta_4': tf.Variable(tf.constant(0.0,shape=[64]),name='Generator/beta_4'), 'gamma_4': tf.Variable(tf.random_normal(shape=[64],mean=1.0,stddev=0.02),name='Generator/gamma_4'), "W_5": tf.Variable(tf.truncated_normal([5,5,IMAGE_CHANNEL,64],stddev=0.02),name='Generator/W_5'), "b_5": tf.Variable(tf.constant(0.0,shape=[IMAGE_CHANNEL]),name='Generator/b_5') } # Generator # 矩阵拼接的函数tf.stack() # 矩阵分解的函数tf.unstack() def generator(noise): with tf.variable_scope("Generator"): out_1 = tf.matmul(noise,generator_variables_dict["W_1"]) + generator_variables_dict['b_1'] out_1 = tf.reshape(out_1,[-1,IMAGE_SIZE // 16,IMAGE_SIZE // 16,512]) out_1 = batch_norm(out_1,generator_variables_dict["beta_1"],generator_variables_dict["gamma_1"],train_phase, scope='bn_1') out_1 = tf.nn.relu(out_1,name='relu_1') out_2 = tf.nn.conv2d_transpose(out_1,generator_variables_dict['W_2'], output_shape=tf.stack([tf.shape(out_1)[0],IMAGE_SIZE // 8,IMAGE_SIZE // 8,256]), strides=[1,2,2,1],padding='SAME') out_2 = tf.nn.bias_add(out_2,generator_variables_dict['b_2']) out_2 = batch_norm(out_2,generator_variables_dict["beta_2"],generator_variables_dict["gamma_2"],train_phase, scope='bn_2') out_2 = tf.nn.relu(out_2,name='relu_2') out_3 = tf.nn.conv2d_transpose(out_2,generator_variables_dict['W_3'], output_shape=tf.stack([tf.shape(out_2)[0],IMAGE_SIZE // 4,IMAGE_SIZE // 4,128]), strides=[1,2,2,1],padding='SAME') out_3 = tf.nn.bias_add(out_3,generator_variables_dict['b_3']) out_3 = batch_norm(out_3,generator_variables_dict["beta_3"],generator_variables_dict["gamma_3"],train_phase, scope='bn_3') out_3 = tf.nn.relu(out_3,name='relu_3') out_4 = tf.nn.conv2d_transpose(out_3,generator_variables_dict['W_4'], output_shape=tf.stack([tf.shape(out_3)[0],IMAGE_SIZE // 2,IMAGE_SIZE // 2,64]), strides=[1,2,2,1],padding='SAME') out_4 = tf.nn.bias_add(out_4,generator_variables_dict['b_4']) out_4 = batch_norm(out_4,generator_variables_dict["beta_4"],generator_variables_dict["gamma_4"],train_phase, scope='bn_4') out_4 = tf.nn.relu(out_4,name='relu_4') out_5 = tf.nn.conv2d_transpose(out_4,generator_variables_dict['W_5'], output_shape=tf.stack([tf.shape(out_4)[0],IMAGE_SIZE,IMAGE_SIZE,IMAGE_CHANNEL]), strides=[1,2,2,1],padding='SAME') out_5 = tf.nn.bias_add(out_5,generator_variables_dict['b_5']) out_5 = tf.nn.tanh(out_5,name='tanh_5') return out_5 # 鉴别器参数初始化 # 权重偏执&batch_normal层参数 discriminator_variables_dict = { "W_1": tf.Variable(tf.truncated_normal([4,4,IMAGE_CHANNEL,32],stddev=0.002),name='Discriminator/W_1'), "b_1": tf.Variable(tf.constant(0.0,shape=[32]),name='Discriminator/b_1'), 'beta_1': tf.Variable(tf.constant(0.0,shape=[32]),name='Discriminator/beta_1'), 'gamma_1': tf.Variable(tf.random_normal(shape=[32],mean=1.0,stddev=0.02),name='Discriminator/gamma_1'), "W_2": tf.Variable(tf.truncated_normal([4,4,32,64],stddev=0.002),name='Discriminator/W_2'), "b_2": tf.Variable(tf.constant(0.0,shape=[64]),name='Discriminator/b_2'), 'beta_2': tf.Variable(tf.constant(0.0,shape=[64]),name='Discriminator/beta_2'), 'gamma_2': tf.Variable(tf.random_normal(shape=[64],mean=1.0,stddev=0.02),name='Discriminator/gamma_2'), "W_3": tf.Variable(tf.truncated_normal([4,4,64,128],stddev=0.002),name='Discriminator/W_3'), "b_3": tf.Variable(tf.constant(0.0,shape=[128]),name='Discriminator/b_3'), 'beta_3': tf.Variable(tf.constant(0.0,shape=[128]),name='Discriminator/beta_3'), 'gamma_3': tf.Variable(tf.random_normal(shape=[128],mean=1.0,stddev=0.02),name='Discriminator/gamma_3'), "W_4": tf.Variable(tf.truncated_normal([4,4,64,128],stddev=0.002),name='Discriminator/W_4'), "b_4": tf.Variable(tf.constant(0.0,shape=[64]),name='Discriminator/b_4'), 'beta_4': tf.Variable(tf.constant(0.0,shape=[64]),name='Discriminator/beta_4'), 'gamma_4': tf.Variable(tf.random_normal(shape=[64],mean=1.0,stddev=0.02),name='Discriminator/gamma_4'), "W_5": tf.Variable(tf.truncated_normal([4,4,32,64],stddev=0.002),name='Discriminator/W_5'), "b_5": tf.Variable(tf.constant(0.0,shape=[32]),name='Discriminator/b_5'), 'beta_5': tf.Variable(tf.constant(0.0,shape=[32]),name='Discriminator/beta_5'), 'gamma_5': tf.Variable(tf.random_normal(shape=[32],mean=1.0,stddev=0.02),name='Discriminator/gamma_5'), "W_6": tf.Variable(tf.truncated_normal([4,4,3,32],stddev=0.002),name='Discriminator/W_6'), "b_6": tf.Variable(tf.constant(0.0,shape=[3]),name='Discriminator/b_6') } # Discriminator def discriminator(input_images): with tf.variable_scope("Discriminator"): # Encoder out_1 = tf.nn.conv2d(input_images,discriminator_variables_dict['W_1'],strides=[1,2,2,1],padding='SAME') out_1 = tf.nn.bias_add(out_1,discriminator_variables_dict['b_1']) out_1 = batch_norm(out_1,discriminator_variables_dict['beta_1'],discriminator_variables_dict['gamma_1'], train_phase,scope='bn_1') out_1 = tf.maximum(0.2 * out_1,out_1,'leaky_relu_1') out_2 = tf.nn.conv2d(out_1,discriminator_variables_dict['W_2'],strides=[1,2,2,1],padding='SAME') out_2 = tf.nn.bias_add(out_2,discriminator_variables_dict['b_2']) out_2 = batch_norm(out_2,discriminator_variables_dict['beta_2'],discriminator_variables_dict['gamma_2'], train_phase,scope='bn_2') out_2 = tf.maximum(0.2 * out_2,out_2,'leaky_relu_2') out_3 = tf.nn.conv2d(out_2,discriminator_variables_dict['W_3'],strides=[1,2,2,1],padding='SAME') out_3 = tf.nn.bias_add(out_3,discriminator_variables_dict['b_3']) out_3 = batch_norm(out_3,discriminator_variables_dict['beta_3'],discriminator_variables_dict['gamma_3'], train_phase,scope='bn_3') out_3 = tf.maximum(0.2 * out_3,out_3,'leaky_relu_3') encode = tf.reshape(out_3,[-1,2 * IMAGE_SIZE * IMAGE_SIZE]) # Decoder out_3 = tf.reshape(encode,[-1,IMAGE_SIZE // 8,IMAGE_SIZE // 8,128]) out_4 = tf.nn.conv2d_transpose(out_3,discriminator_variables_dict['W_4'], output_shape=tf.stack([tf.shape(out_3)[0],IMAGE_SIZE // 4,IMAGE_SIZE // 4,64]), strides=[1,2,2,1],padding='SAME') out_4 = tf.nn.bias_add(out_4,discriminator_variables_dict['b_4']) out_4 = batch_norm(out_4,discriminator_variables_dict['beta_4'],discriminator_variables_dict['gamma_4'], train_phase,scope='bn_4') out_4 = tf.maximum(0.2 * out_4,out_4,'leaky_relu_4') out_5 = tf.nn.conv2d_transpose(out_4,discriminator_variables_dict['W_5'], output_shape=tf.stack([tf.shape(out_4)[0],IMAGE_SIZE // 2,IMAGE_SIZE // 2,32]), strides=[1,2,2,1],padding='SAME') out_5 = tf.nn.bias_add(out_5,discriminator_variables_dict['b_5']) out_5 = batch_norm(out_5,discriminator_variables_dict['beta_5'],discriminator_variables_dict['gamma_5'], train_phase,scope='bn_5') out_5 = tf.maximum(0.2 * out_5,out_5,'leaky_relu_5') out_6 = tf.nn.conv2d_transpose(out_5,discriminator_variables_dict['W_6'], output_shape=tf.stack([tf.shape(out_5)[0],IMAGE_SIZE,IMAGE_SIZE,3]), strides=[1,2,2,1],padding='SAME') out_6 = tf.nn.bias_add(out_6,discriminator_variables_dict['b_6']) decoded = tf.nn.tanh(out_6,name="tanh_6") return encode,decoded
结构如下,
辨别器:
64,64,3
32,32,32
16,16,64
8,8,128
64×64×2
8,8,128
16,16,64
32,32,32
64,64,3
生成器:
100
64×64×2
4,4,512
8,8,256
16,16,128
32,32,64
64,64,3
损失函数以及训练策略很有意思,
这里面涉及的很多tensorflow操作都很到位,应该好好学习一下,
# mean squared errors _,real_decoded = discriminator(X) real_loss = tf.sqrt(2 * tf.nn.l2_loss(real_decoded - X)) / batch_size fake_image = generator(noise) _,fake_decoded = discriminator(fake_image) fake_loss = tf.sqrt(2 * tf.nn.l2_loss(fake_decoded - fake_image)) / batch_size # loss # D_loss = real_loss + tf.maximum(1 - fake_loss, 0) margin = 20 D_loss = margin - fake_loss + real_loss G_loss = fake_loss # no pt def optimizer(loss,d_or_g): optim = tf.train.AdamOptimizer(learning_rate=0.001,beta1=0.5) # print([v.name for v in tf.trainable_variables() if v.name.startswith(d_or_g)]) var_list = [v for v in tf.trainable_variables() if v.name.startswith(d_or_g)] gradient = optim.compute_gradients(loss,var_list=var_list) return optim.apply_gradients(gradient) train_op_G = optimizer(G_loss,'Generator') train_op_D = optimizer(D_loss,'Discriminator')
训练部分的重载模型参数,属于之前一直没有注意到的细节,
with tf.Session() as sess: sess.run(tf.global_variables_initializer(),feed_dict={train_phase: True}) saver = tf.train.Saver() # 恢复前一次训练 ckpt = tf.train.get_checkpoint_state('.') if ckpt != None: print(ckpt.model_checkpoint_path) saver.restore(sess,ckpt.model_checkpoint_path) else: print("没找到模型") step = 0 for i in range(40): for j in range(num_batch): batch_noise = np.random.uniform(-1.0,1.0,size=[batch_size,z_dim]).astype(np.float32) d_loss,_ = sess.run([D_loss,train_op_D], feed_dict={noise: batch_noise,X: get_next_batch(j),train_phase: True}) g_loss,_ = sess.run([G_loss,train_op_G], feed_dict={noise: batch_noise,X: get_next_batch(j),train_phase: True}) g_loss,_ = sess.run([G_loss,train_op_G], feed_dict={noise: batch_noise,X: get_next_batch(j),train_phase: True}) print(step,d_loss,g_loss) # 保存模型并生成图像 if step % 100 == 0: saver.save(sess,"celeba.model",global_step=step) test_noise = np.random.uniform(-1.0,1.0,size=(5,z_dim)).astype(np.float32) images = sess.run(fake_image,feed_dict={noise: test_noise,train_phase: False}) for k in range(5): image = images[k,:,:,:] image += 1 image *= 127.5 image = np.clip(image,0,255).astype(np.uint8) image = np.reshape(image,(IMAGE_SIZE,IMAGE_SIZE,-1)) misc.imsave('fake_image' + str(step) + str(k) + '.jpg',image) step += 1