『TensorFlow』读书笔记_进阶卷积神经网络_分类cifar10_下
数据读取部分实现
文中采用了tensorflow的从文件直接读取数据的方式,逻辑流程如下,
实现如下,
# Author : Hellcat # Time : 2017/12/9 import os import tensorflow as tf IMAGE_SIZE = 24 NUM_CLASSES = 10 NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 50000 NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 10000 def read_cifar10(filename_queue): """Reads and parses examples from CIFAR10 data files. Recommendation: if you want N-way read parallelism, call this function N times. This will give you N independent Readers reading different files & positions within those files, which will give better mixing of examples. Args: filename_queue: A queue of strings with the filenames to read from. Returns: An object representing a single example, with the following fields: height: number of rows in the result (32) width: number of columns in the result (32) depth: number of color channels in the result (3) key: a scalar string Tensor describing the filename & record number for this example. label: an int32 Tensor with the label in the range 0..9. uint8image: a [height, width, depth] uint8 Tensor with the image data """ class CIFAR10Record(object): pass result = CIFAR10Record() # Dimensions of the images in the CIFAR-10 dataset. label_bytes = 1 # 2 for CIFAR-100 result.height = 32 result.width = 32 result.depth = 3 image_bytes = result.height * result.width * result.depth record_bytes = label_bytes + image_bytes # Read a record, getting filenames from the filename_queue. # No header or footer in the CIFAR-10 format, so we leave header_bytes # and footer_bytes at their default of 0. # 初始化阅读器 reader = tf.FixedLengthRecordReader(record_bytes=record_bytes) # 指定被阅读文件 result.key, value = reader.read(filename_queue) # Convert from a string to a vector of uint8 that is record_bytes long. # read出来的是一个二进制的string,将它解码依照uint8格式解码 record_bytes = tf.decode_raw(value, tf.uint8) # The first bytes represent the label, which we convert from uint8->int32. # tf.strided_slice(record_bytes, begin, end): # Extracts a strided slice of a tensor result.label = tf.cast( tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32) # print(result.label.get_shape()) # (?,) # The remaining bytes after the label represent the image, which we reshape # from [depth * height * width] to [depth, height, width]. depth_major = tf.reshape( tf.strided_slice(record_bytes, [label_bytes], [label_bytes + image_bytes]), [result.depth, result.height, result.width]) # print(depth_major.get_shape()) # (3, 32, 32) # Convert from [depth, height, width] to [height, width, depth]. result.uint8image = tf.transpose(depth_major, [1, 2, 0]) return result def distorted_inputs(data_dir, batch_size): ''' 读入&预处理图片 :param data_dir: bin文件位置 :param batch_size: 单批输出大小 :return: ''' # 读取文件名 filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i) for i in range(1, 6)] # 检查文件名对应的文件是否存在 for f in filenames: if not tf.gfile.Exists(f): raise ValueError('Failed to find file: ' + f) # 建立文件名队列 filename_queue = tf.train.string_input_producer(filenames) # 读取文件得到图片,转为tf.float32 read_input = read_cifar10(filename_queue) reshaped_image = tf.cast(read_input.uint8image, tf.float32) height = IMAGE_SIZE width = IMAGE_SIZE # 随机裁剪 distorted_image = tf.random_crop(reshaped_image, [height, width, 3]) # 随机翻转 distorted_image = tf.image.random_flip_left_right(distorted_image) # 随机亮度 distorted_image = tf.image.random_brightness(distorted_image,max_delta=63) # 随机对比度 distorted_image = tf.image.random_contrast(distorted_image,lower=0.2, upper=1.8) # 标准化 float_image = tf.image.per_image_standardization(distorted_image) ''' tf.Tensor.set_shape() 方法(method)会更新(updates)一个 Tensor 对象的静态 shape , 当静态 shape 信息不能够直接推导得出的时候,此方法常用来提供额外的 shape 信息。 它不改变此 tensor 动态 shape 的信息。 tf.reshape() 操作(operation)会以不同的动态 shape 创建一个新的 tensor。 tf.strided_slice()由于不会显示的计算tensor形状,所以其返回shape是?的,所以label 需要使用set_shape,而image在skice之后已经reshape了,所以其tensor是有静态shape的。 ''' # Set the shapes of tensors. # float_image.set_shape([height, width, 3]) read_input.label.set_shape([1]) # Ensure that the random shuffling has good mixing properties. min_fraction_of_examples_in_queue = 0.4 min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN * min_fraction_of_examples_in_queue) print ('Filling queue with %d CIFAR images before starting to train. ' 'This will take a few minutes.' % min_queue_examples) # Generate a batch of images and labels by building up a queue of examples. return _generate_image_and_label_batch(float_image, read_input.label, min_queue_examples, batch_size, shuffle=True) def _generate_image_and_label_batch(image, label, min_queue_examples, batch_size, shuffle): ''' 单batch数据生成 :param image: reader读取的值经过处理后的tensor :param label: reader读取的值经过处理后的tensor :param min_queue_examples: 最短队列长度 :param batch_size: batch尺寸 :param shuffle: 是否随机化 :return: batch的图片和标签 ''' num_preprocess_threads = 16 if shuffle: images, label_batch = tf.train.shuffle_batch( [image, label], batch_size=batch_size, num_threads=num_preprocess_threads, capacity=min_queue_examples + 3 * batch_size, min_after_dequeue=min_queue_examples) else: images, label_batch = tf.train.batch( [image, label], batch_size=batch_size, num_threads=num_preprocess_threads, capacity=min_queue_examples + 3 * batch_size) # Display the training images in the visualizer. tf.summary.image('images', images) return images, tf.reshape(label_batch, [batch_size]) def inputs(eval_data, data_dir, batch_size): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. data_dir: Path to the CIFAR-10 data directory. batch_size: Number of images per batch. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. """ # 建立文件名队列 if not eval_data: filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i) for i in range(1, 6)] num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN else: filenames = [os.path.join(data_dir, 'test_batch.bin')] num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL # 确认文件是否存在 for f in filenames: if not tf.gfile.Exists(f): raise ValueError('Failed to find file: ' + f) # 读取文件名队列 filename_queue = tf.train.string_input_producer(filenames) # 读取文件 read_input = read_cifar10(filename_queue) reshaped_image = tf.cast(read_input.uint8image, tf.float32) height = IMAGE_SIZE width = IMAGE_SIZE # 重置图片大小,简单裁剪或填充 resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image, height, width) # 标准化 float_image = tf.image.per_image_standardization(resized_image) # Set the shapes of tensors. float_image.set_shape([height, width, 3]) read_input.label.set_shape([1]) # Ensure that the random shuffling has good mixing properties. min_fraction_of_examples_in_queue = 0.4 min_queue_examples = int(num_examples_per_epoch * min_fraction_of_examples_in_queue) # Generate a batch of images and labels by building up a queue of examples. return _generate_image_and_label_batch(float_image, read_input.label, min_queue_examples, batch_size, shuffle=False)
TensorFlow使用总结
tensorflow直接从文件读取数据流程
1.建立文件名队列
filename_queue = tf.train.string_input_producer(filenames)
2.阅读器初始化 & 单次读取规则设定
# 初始化阅读器 reader = tf.FixedLengthRecordReader(record_bytes=record_bytes) # 指定被阅读文件 result.key, value = reader.read(filename_queue)
3.对单次读取的数据tensor进行处理
# Convert from a string to a vector of uint8 that is record_bytes long. # read出来的是一个二进制的string,将它解码依照uint8格式解码 record_bytes = tf.decode_raw(value, tf.uint8) …… ……
由于读取来的tensor不具有静态shape,需要使用tensor.set_shape()指定shape(或者在处理中显示的赋予shape如使用reshape等函数),否则无法建立图
read_input.label.set_shape([1])
4.将最后的规则tensor传入batch生成池节点中,输出的张量可以直接feed进网络
images_train, labels_train = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=batch_size) …… …… image_batch, label_batch = sess.run([images_train, labels_train]) _, loss_value = sess.run( [train_op, loss], feed_dict={image_holder:image_batch, label_holder:label_batch})
5.初始化队列(相关的线程控制器组件添加也在这里)
# 启动数据增强队列 tf.train.start_queue_runners()
附上线程控制组件使用示意,
import tensorflow as tf sess = tf.Session() coord = tf.train.coordinator() threads = tf.train.start_queue_runners(sess=sess,coord=coord) # 训练过程 coord.request_stop() coord.join(threads)