摘要:在做分类时常常需要估算不同样本之间的相似性度量(SimilarityMeasurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。 本文的目的就是对常用的相似性度量作一个总结。本文目录:1.欧氏距离2.曼哈顿距离3. 切比雪夫距离4. 闵可夫斯基距离5.标准化欧氏距离6.马氏距离7.夹角余弦8.汉明距离9.杰卡德距离& 杰卡德相似系数10.相关系数& 相关距离11.信息熵1. 欧氏距离(EuclideanDistance) 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公
阅读全文
posted @ 2011-03-08 23:42