关系代数运算基本实现

传统的集合运算:

(1):并(Union)

1 //
2  relate union_relate(relate u_R, relate u_S)
3 {
4 relate P;
5 int i = 0, j = 0, k = 0;
6 for (i = 0; i < 25; i++)
7 {
8 P.num_tuple = u_S.num_tuple;
9 P.num_row = u_S.num_row;
10 P.i_A[i] = 0;
11 P.i_B[i] = 0;
12 P.i_C[i] = 0;
13 P.i_D[i] = 0;
14 P.i_E[i] = 0;
15 P.i_F[i] = 0;
16 }
17
18 if (u_R.num_row != u_S.num_row)
19 {
20 cout << "R、S不是同目关系" << endl;
21 return P;
22 }
23
24 for (i = 0; i < u_R.num_tuple; i++)
25 {
26 P.i_A[i] = u_S.i_A[i];
27 P.i_B[i] = u_S.i_B[i];
28 P.i_C[i] = u_S.i_C[i];
29 }
30
31 for (i = 0, k = u_R.num_tuple; i < u_R.num_tuple; i++)
32 {
33 for (j = 0; j < u_S.num_tuple; j ++)
34 {
35 if (u_R.i_A[i] == u_S.i_A[j]
36 && u_R.i_B[i] == u_S.i_B[j]
37 && u_R.i_C[i] == u_S.i_C[j])
38 {
39 break;
40 }
41 else
42 {
43 if (j == u_S.num_tuple -1)
44 {
45 P.i_A[k] = u_R.i_A[i];
46 P.i_B[k] = u_R.i_B[i];
47 P.i_C[k] = u_R.i_C[i];
48 (P.num_tuple)++;
49 k++;
50 }
51 }
52 }
53 }
54
55 return P;
56 }

(2)差(Difference):

//
relate except_relate(relate e_R, relate e_S) //except
{
relate P;
int i = 0, j = 0, k = 0;
for (i = 0; i < 25; i++)
{
P.num_tuple
= 0;
P.num_row
= e_R.num_row;
P.i_A[i]
= 0;
P.i_B[i]
= 0;
P.i_C[i]
= 0;
P.i_D[i]
= 0;
P.i_E[i]
= 0;
P.i_F[i]
= 0;
}

if (e_R.num_row != e_S.num_row)
{
cout
<< "R、S不是同目关系" << endl;
return P;
}

for (i = 0, k = 0; i < e_R.num_tuple; i++)
{
for (j = 0; j < e_S.num_tuple; j ++)
{
if (e_R.i_A[i] == e_S.i_A[j]
&& e_R.i_B[i] == e_S.i_B[j]
&& e_R.i_C[i] == e_S.i_C[j])
{
break;
}
else
{
if (j == e_S.num_tuple -1)
{
P.i_A[k]
= e_R.i_A[i];
P.i_B[k]
= e_R.i_B[i];
P.i_C[k]
= e_R.i_C[i];
(P.num_tuple)
++;
k
++;
}
}
}
}
return P;
}

(3)交(Interstation):

/****************************************************************

方法一:

****************************************************************
*/
//
relate intersect_relate(relate i_R, relate i_S) //intersection
{
relate P;
int i = 0, j = 0, k = 0;
for (i = 0; i < 25; i++)
{
P.num_tuple
= 0;
P.num_row
= i_R.num_row;
P.i_A[i]
= 0;
P.i_B[i]
= 0;
P.i_C[i]
= 0;
P.i_D[i]
= 0;
P.i_E[i]
= 0;
P.i_F[i]
= 0;
}

if ( i_R.num_row != i_S.num_row)
{
cout
<< "R、S不是同目关系" << endl;
return P;
}

for (i = 0, k =0; i < i_R.num_tuple; i++)
{
for (j = 0; j < i_S.num_tuple; j++)
{
if (i_R.i_A[i] == i_S.i_A[j]
&& i_R.i_B[i] == i_S.i_B[j]
&& i_R.i_C[i] == i_S.i_C[j])
{
P.i_A[k]
= i_R.i_A[i];
P.i_B[k]
= i_R.i_B[i];
P.i_C[k]
= i_R.i_C[i];
(P.num_tuple)
++;
k
++;
}
}
}
return P;
}

对于交还有另一种算法:R n S = R - (R - S)

代码如下:

//***************************************************************
//
//方法二:
//
//***************************************************************
relate intersect_relate(relate i_R, relate i_S) //intersection
{
relate P;
int i = 0;
for (i = 0; i < 25; i++)
{
P.num_tuple
= 0;
P.num_row
= i_R.num_row;
P.i_A[i]
= 0;
P.i_B[i]
= 0;
P.i_C[i]
= 0;
P.i_D[i]
= 0;
P.i_E[i]
= 0;
P.i_F[i]
= 0;
}

if (i_R.num_row != i_S.num_row)
{
cout
<< "R、S不是同目关系" << endl;
return P;
}

P
= except_relate(i_R,except_relate(i_R,i_S));
return P;
}

(4)笛卡尔积(Cartesian Product):

//笛卡尔积
relate car_pro_relate(relate c_R, relate c_S) //cartesian product
{
relate P;
int i = 0, j = 0, k = 0, n = 0;
for (i = 0; i < 25; i++)
{
P.num_tuple
= c_R.num_tuple * c_S.num_tuple;
P.num_row
= c_R.num_row + c_S.num_row;
P.i_A[i]
= 0;
P.i_B[i]
= 0;
P.i_C[i]
= 0;
P.i_D[i]
= 0;
P.i_E[i]
= 0;
P.i_F[i]
= 0;
}

for (i = 0; i < c_R.num_tuple * c_S.num_tuple; i++)
{
if (i < (j+1)*c_S.num_tuple)
{
P.i_A[i]
= c_R.i_A[j];
P.i_B[i]
= c_R.i_B[j];
P.i_C[i]
= c_R.i_C[j];
P.i_D[i]
= c_S.i_D[j];
P.i_E[i]
= c_S.i_E[j];
P.i_F[i]
= c_S.i_F[j];
}
if ((i+1) % c_S.num_tuple == 0)
{
j
++;
}
}

for (i = 0; i < c_R.num_tuple * c_S.num_tuple; i++)
{
for (j = 0; j < c_S.num_tuple; j++)
{
if (i % c_S.num_tuple == j)
{
if (c_R.num_row == 1)
{
P.i_B[i]
= c_S.i_A[j];
P.i_C[i]
= c_S.i_B[j];
P.i_D[i]
= c_S.i_C[j];
}
if (c_R.num_row == 2)
{
P.i_C[i]
= c_S.i_A[j];
P.i_D[i]
= c_S.i_B[j];
P.i_E[i]
= c_S.i_C[j];
}
if (c_R.num_row == 3)
{
P.i_D[i]
= c_S.i_A[j];
P.i_E[i]
= c_S.i_B[j];
P.i_F[i]
= c_S.i_C[j];
}
}
}
}
return P;
}

专门的关系运算:

(1)投影(Projection):

//投影,只提供实现在单个属性列上的投影
//R在S上的投影
// R
// A B C C
//-------------------------------
// 1 3 2 2
// 5 7 2 2
// 1 3 4 4
//--------------------------------
// PAI (R)
// (S)
relate project_relate(relate p_R, char ch) //projection
{
relate P;
int i = 0, j = 0, k = 0, n = 0;
for (i = 0; i < 25; i++)
{
P.num_tuple
= p_R.num_tuple;
P.num_row
= 1;
P.i_A[i]
= 0;
P.i_B[i]
= 0;
P.i_C[i]
= 0;
P.i_D[i]
= 0;
P.i_E[i]
= 0;
P.i_F[i]
= 0;
}
if (ch == 'A')
{
for (i = 0; i < p_R.num_tuple; i++)
{
P.i_A[i]
= p_R.i_A[i];
}
}
if (ch == 'B')
{
for (i = 0; i < p_R.num_tuple; i++)
{
P.i_A[i]
= p_R.i_B[i];
}
}
if (ch == 'C')
{
for (i = 0; i < p_R.num_tuple; i++)
{
P.i_A[i]
= p_R.i_C[i];
}
}
//去除相同元素
for (i = 0; i < p_R.num_tuple; i++)
{
for (j = i+1; j < p_R.num_tuple; j++)
{
if (P.i_A[i] == P.i_A[j])
{
P.i_A[j]
= 0;
}
}
}

for (i = 0, k= 0; i < P.num_tuple; i++)
{
if (P.i_A[i] != 0)
{
P.i_A[k]
= P.i_A[i];
k
++;
}
}
P.num_tuple
= k;
return P;
}

(2)自然连接(Natural join):

//自然连接
relate join_relate(relate j_R, relate j_S) //join
{
relate P, Q;
int i = 0, j = 0, k = 0, n = 0;
for (i = 0; i < 25; i++)
{
P.num_tuple
= 0;
P.num_row
= 4; //R(A,B,C)和S(B,C,D)相同属性名是B、C,自然连接后剩下四个属性组
//R(A,B)和S(B,C,D)相同属性名是B,自然连接后4个属性组
P.i_A[i] = 0;
P.i_B[i]
= 0;
P.i_C[i]
= 0;
P.i_D[i]
= 0;
P.i_E[i]
= 0;
P.i_F[i]
= 0;
Q.num_tuple
= 0;
Q.num_row
= 0;
Q.i_A[i]
= 0;
Q.i_B[i]
= 0;
Q.i_C[i]
= 0;
Q.i_D[i]
= 0;
Q.i_E[i]
= 0;
Q.i_F[i]
= 0;
}
for (i = 0; i < j_S.num_tuple; i++)//为了能使用笛卡尔积函数,将S(B,C,D,)转为S(A,B,C)
{
j_S.i_A[i]
= j_S.i_B[i];
j_S.i_B[i]
= j_S.i_C[i];
j_S.i_C[i]
= j_S.i_D[i];
j_S.i_D[i]
= j_S.i_E[i];
j_S.i_E[i]
= j_S.i_F[i];
}
Q
= car_pro_relate(j_R, j_S);

//R有三个属性组,且B,C为相同属性名
if (j_R.num_row == 3)
{
//相同属性名是B、C
// R S
// A B C B C D
//-> A B C A B C
//---------------------------
//Q: A B C D E F
//P: A B C D

for (i = 0,j = 0; i < Q.num_tuple; i++)
{
if (Q.i_B[i] == Q.i_D[i] && Q.i_C[i] == Q.i_E[i])
{
P.i_A[j]
= Q.i_A[i];
P.i_B[j]
= Q.i_B[i];
P.i_C[j]
= Q.i_C[i];
P.i_D[j]
= Q.i_D[i];
P.i_E[j]
= Q.i_E[i];
P.i_F[j]
= Q.i_F[i];
j
++;
}
}
P.num_tuple
= j;
for (i = 0; i < P.num_tuple; i++)
{
P.i_D[i]
= P.i_F[i];
P.i_E[i]
= 0;
P.i_F[i]
= 0;
}
}

//相同属性名是B且R只有两个属性组
if (j_R.num_row == 2)
{
//相同属性名是B
// R S
//--------------------------
// A B | B C D
//-> A B | A B C
//Q: A B C D E
// \ / \ / \ /
// \ / \/ \/
//P: A B C D
for (i = 0,j = 0; i < Q.num_tuple; i++)
{
if (Q.i_B[i] == Q.i_C[i])
{
P.i_A[j]
= Q.i_A[i];
P.i_B[j]
= Q.i_B[i];
P.i_C[j]
= Q.i_C[i];
P.i_D[j]
= Q.i_D[i];
P.i_E[j]
= Q.i_E[i];
P.i_F[j]
= Q.i_F[i];
j
++;
}
}
P.num_tuple
= j;
for (i = 0; i < P.num_tuple; i++)
{
P.i_B[i]
= P.i_C[i];
P.i_C[i]
= P.i_D[i];
P.i_D[i]
= P.i_E[i];
P.i_E[i]
= 0;
}
}
return P;
}

(3)除法(Division):

// R / S的必要条件是:
//(1) R.num_tuple>S.num_tuple
//(2) S非空
//(3) R中存在S.num_tuple个属性与S的S.num_tuple个属性定义在相同的域中
relate div_relate(relate d_R ,relate d_S) //division
{
relate P;
int i = 0, j = 0, k = 0, n = 0;
for (i = 0; i < 25; i++)
{
P.num_tuple
= 0;
P.num_row
= d_R.num_row - d_S.num_row;
P.i_A[i]
= 0;
P.i_B[i]
= 0;
P.i_C[i]
= 0;
P.i_D[i]
= 0;
P.i_E[i]
= 0;
P.i_F[i]
= 0;
}
//R(A,B,C) S(A,B)
//X的属性组:C
//Y的属性组:A,B

P
= project_relate(d_R, 'C');
P
= car_pro_relate(d_S,P);
P
= except_relate(P, d_R);
P
= project_relate(P,'C');
P
= except_relate(project_relate(d_R,'C'),P);
return P;
}

好了,写个主函数测试下:

//main.cpp

#include "common.h"

#include <iostream>

using namespace std;

//并、交、差
void UIE(void)
{
	relate R, S, U, I, E;
	int i = 0;
	for (i = 0; i < 25; i++) 
    {
		R.num_tuple = 3;    //记录元组个数
		R.num_row = 3;      //记录列数
		S.num_tuple = 3;    //记录元组个数
		S.num_row = 3;      //记录列数
        R.i_A[i] = 0;
        R.i_B[i] = 0;
        R.i_C[i] = 0;
        R.i_D[i] = 0;
        R.i_E[i] = 0;
        R.i_F[i] = 0;
		S.i_A[i] = 0;
        S.i_B[i] = 0;
        S.i_C[i] = 0;
        S.i_D[i] = 0;
        S.i_E[i] = 0;
        S.i_F[i] = 0;
    }
    //          R        |        S
    //----------------------------------------
    //    A  |  B  |  C  |   A  |  B  |  C
    //    1  |  1  |  2  |   1  |  2  |  1
    //    1  |  2  |  1  |   1  |  1  |  1
    //    2  |  2  |  3  |   2  |  2  |  3
    //----------------------------------------
    //
	
    R.i_A[0] = 1;
    R.i_A[1] = 1;
    R.i_A[2] = 2;
    R.i_B[0] = 1;
    R.i_B[1] = 2;
    R.i_B[2] = 2;
    R.i_C[0] = 2;
    R.i_C[1] = 1;
    R.i_C[2] = 3;
    S.i_A[0] = 1;
    S.i_A[1] = 1;
    S.i_A[2] = 2;
    S.i_B[0] = 2;
    S.i_B[1] = 1;
    S.i_B[2] = 2;
    S.i_C[0] = 1;
    S.i_C[1] = 1;
    S.i_C[2] = 3;
	
	cout << "R:" << endl;
	for (i = 0; i < R.num_tuple; i++)
	{
        cout << R.i_A[i] << "\t" << R.i_B[i] << "\t" << R.i_C[i] <<endl;
		cout << "--------------------" << endl;
	}
	cout << "S:" << endl;
	for (i = 0; i < S.num_tuple; i++)
	{
        cout << S.i_A[i] << "\t" << S.i_B[i] << "\t" << S.i_C[i] <<endl;
		cout << "--------------------" << endl;
	}
    U = union_relate(R, S);
    cout << "\n" << "并:" << endl;
	for (i = 0; i < U.num_tuple; i++)
    {
        cout << U.i_A[i] << "\t" << U.i_B[i] << "\t" << U.i_C[i] <<endl;
		cout << "--------------------" << endl;
    }
	I = intersect_relate(R,S);
	cout << "交:" << endl;
    for (i = 0; i < I.num_tuple; i++)
    {
        cout << I.i_A[i] << "\t" << I.i_B[i] << "\t" << I.i_C[i] <<endl;
		cout << "--------------------" << endl;
    }
	E =except_relate(R,S);
	cout << "差:" << endl;
	for (i = 0; i < E.num_tuple; i++)
    {
        cout << E.i_A[i] << "\t" << E.i_B[i] << "\t" << E.i_C[i] <<endl;
		cout << "--------------------" << endl;
    }

	return;
}

//笛卡尔积
void Car_pro(void)
{
	relate R, S, C;
	int i = 0;
	for (i = 0; i < 25; i++) 
    {
		R.num_tuple = 2;    //记录元组个数
		R.num_row = 3;      //记录列数
		S.num_tuple = 3;    //记录元组个数
		S.num_row = 3;      //记录列数
        R.i_A[i] = 0;
        R.i_B[i] = 0;
        R.i_C[i] = 0;
        R.i_D[i] = 0;
        R.i_E[i] = 0;
        R.i_F[i] = 0;
		S.i_A[i] = 0;
        S.i_B[i] = 0;
        S.i_C[i] = 0;
        S.i_D[i] = 0;
        S.i_E[i] = 0;
        S.i_F[i] = 0;
    }
	//          R        |        S
    //----------------------------------------
    //    A  |  B  |  C  |   A  |  B  |  C
    //    1  |  1  |  2  |   1  |  2  |  1
    //    1  |  2  |  1  |   1  |  1  |  1
    //    2  |  2  |  3  |   2  |  2  |  3
    //----------------------------------------
    //
	
    R.i_A[0] = 1;
    R.i_A[1] = 1;
   // R.i_A[2] = 2;
    R.i_B[0] = 1;
    R.i_B[1] = 2;
   // R.i_B[2] = 2;
    R.i_C[0] = 2;
    R.i_C[1] = 1;
    //R.i_C[2] = 3;
    S.i_A[0] = 1;
    S.i_A[1] = 1;
    S.i_A[2] = 2;
    S.i_B[0] = 2;
    S.i_B[1] = 1;
    S.i_B[2] = 2;
    S.i_C[0] = 1;
    S.i_C[1] = 1;
    S.i_C[2] = 3;
	cout << "\n" <<"R:" << endl;
	for (i = 0; i < R.num_tuple; i++)
	{
        cout << R.i_A[i] << "\t" << R.i_B[i] << "\t" << R.i_C[i] <<endl;
		cout << "--------------------" << endl;
	}
	cout << "S:" << endl;
	for (i = 0; i < S.num_tuple; i++)
	{
        cout << S.i_A[i] << "\t" << S.i_B[i] << "\t" << S.i_C[i] <<endl;
		cout << "--------------------" << endl;
	}
	C =car_pro_relate(R,S);
	cout << "\n" << "笛卡尔积:" << endl;
	for (i = 0; i < C.num_tuple; i++)
	{
		cout << C.i_A[i] << "\t" << C.i_B[i] << "\t" << C.i_C[i] << "\t" << C.i_D[i] << "\t" << C.i_E[i] << "\t" << C.i_F[i] <<endl;
		cout << "---------------------------------------------" << endl;
	}
}

//自然连接
void natural(void)
{
	relate R, S, N;
	int i = 0;
	for (i = 0; i < 25; i++) 
    {
		R.num_tuple = 4;    //记录元组个数
		R.num_row = 3;      //记录列数
		S.num_tuple = 3;    //记录元组个数
		S.num_row = 3;      //记录列数
        R.i_A[i] = 0;
        R.i_B[i] = 0;
        R.i_C[i] = 0;
        R.i_D[i] = 0;
        R.i_E[i] = 0;
        R.i_F[i] = 0;
		S.i_A[i] = 0;
        S.i_B[i] = 0;
        S.i_C[i] = 0;
        S.i_D[i] = 0;
        S.i_E[i] = 0;
        S.i_F[i] = 0;
    }
	//            R              |              S
	//-----------------------------------------------------
	//    A   |   B    |   C     |      B   |   C   |   D
	//-----------------------------------------------------
	//    2   |   4    |   6     |      5   |   7   |   3
	//    3   |   5    |   7     |      4   |   6   |   2   
	//    7   |   4    |   6     |      5   |   7   |   9
	//    5   |   4    |   7     |
	//----------------------------------------------------
	R.i_A[0] = 2;
    R.i_A[1] = 3;
    R.i_A[2] = 7;
    R.i_A[3] = 5;
    R.i_B[0] = 4;
    R.i_B[1] = 5;
    R.i_B[2] = 4;
    R.i_B[3] = 4;
    R.i_C[0] = 6;
    R.i_C[1] = 7;
    R.i_C[2] = 6;
    R.i_C[3] = 7;

    S.i_B[0] = 5;
    S.i_B[1] = 4;
    S.i_B[2] = 5;
    S.i_C[0] = 7;
    S.i_C[1] = 6;
    S.i_C[2] = 7;
    S.i_D[0] = 3;
    S.i_D[1] = 2;
    S.i_D[2] = 9;
	cout << "\n" << "R:" << endl;
	cout << "R.A" << "\t" << "R.B" << "\t" << "R.C" <<endl;
	cout << "--------------------" << endl;
	for (i = 0; i < R.num_tuple; i++)
	{
        cout << R.i_A[i] << "\t" << R.i_B[i] << "\t" << R.i_C[i] <<endl;
		cout << "--------------------" << endl;
	}
	cout << "S:" << endl;
	cout << "S.B" << "\t" << "S.C" << "\t" << "S.D" <<endl;
	for (i = 0; i < S.num_tuple; i++)
	{
        cout << S.i_B[i] << "\t" << S.i_C[i] << "\t" << S.i_D[i] <<endl;
		cout << "--------------------" << endl;
	}
	N = join_relate(R, S);
	cout << "\n" << "自然连接:" << endl;
	cout << "A" << "\t" << "B" << "\t" << "C" << "\t" << "D" <<endl;
	cout << "-----------------------------" << endl;
	for (i = 0; i < N.num_tuple; i++)
	{
		cout << N.i_A[i] << "\t" << N.i_B[i] << "\t" << N.i_C[i] << "\t" << N.i_D[i] <<endl;
		cout << "-----------------------------" << endl;
	}
	return;
}

//除法
void div(void)
{
	relate R, S, D;
	int i = 0;
	for (i = 0; i < 25; i++) 
    {
		R.num_tuple = 5;    //记录元组个数
		R.num_row = 3;      //记录列数
		S.num_tuple = 2;    //记录元组个数
		S.num_row = 2;      //记录列数
        R.i_A[i] = 0;
        R.i_B[i] = 0;
        R.i_C[i] = 0;
        R.i_D[i] = 0;
        R.i_E[i] = 0;
        R.i_F[i] = 0;
		S.i_A[i] = 0;
        S.i_B[i] = 0;
        S.i_C[i] = 0;
        S.i_D[i] = 0;
        S.i_E[i] = 0;
        S.i_F[i] = 0;
    }
	//            R              |          S
	//----------------------------------------------
	//    A   |   B    |   C     |      A   |   B   
	//----------------------------------------------
	//    1   |   3    |   2     |      1   |   3   
	//    5   |   7    |   2     |      5   |   7    
	//    1   |   3    |   4     |     
	//    1   |   3    |   6     |
	//    5   |   7    |   6     | 
	//-----------------------------------------------
	R.i_A[0] = 1;
    R.i_A[1] = 5;
    R.i_A[2] = 1;
    R.i_A[3] = 1;
    R.i_A[4] = 5;
    R.i_B[0] = 3;
    R.i_B[1] = 7;
    R.i_B[2] = 3;
    R.i_B[3] = 3;
    R.i_B[4] = 7;
	R.i_C[0] = 2;
    R.i_C[1] = 2;
    R.i_C[2] = 4;
    R.i_C[3] = 6;
    R.i_C[4] = 6;
	
    S.i_A[0] = 1;
    S.i_A[1] = 5;
    S.i_B[0] = 3;
    S.i_B[1] = 7;
	cout << "\n" << "R:" << endl;
	cout << "R.A" << "\t" << "R.B" << "\t" << "R.C" <<endl;
	cout << "--------------------" << endl;
	for (i = 0; i < R.num_tuple; i++)
	{
        cout << R.i_A[i] << "\t" << R.i_B[i] << "\t" << R.i_C[i] <<endl;
		cout << "--------------------" << endl;
	}
	cout << "S:" << endl;
	cout << "S.A" << "\t" << "S.B" <<endl;
	for (i = 0; i < S.num_tuple; i++)
	{
        cout << S.i_A[i] << "\t" << S.i_B[i] <<endl;
		cout << "-------------" << endl;
	}
	D = div_relate(R, S);
	cout << "\n" << "除法:" << endl;
	cout << "\t" << "C" <<endl;
	cout << "----------------" << endl;
	for (i = 0; i < D.num_tuple; i++)
	{
		cout  << "\t" << D.i_A[i] <<endl;
		cout << "----------------" << endl;
	}

	cout << "\t\t\tOK! \n\t功能基本上实现了,但还是有多处不能推广(比如说有些属性组被限制)!\n " << endl;
	return;
}
int main()
{

	UIE();
	Car_pro();
	natural();
    div();
    return 0;
}

好,commom.h里的内容只是声明函数和定义结构体:

//commom.h

#ifndef COMMON_H_INCLUDED
#define COMMON_H_INCLUDED


typedef struct
{
    int num_tuple;    //记录元组个数
    int num_row;      //记录列数,即:目
    int i_A[25];
    int i_B[25];
    int i_C[25];
    int i_D[25];
    int i_E[25];
    int i_F[25];
}relate;

relate union_relate(relate u_R, relate u_S);      //union
relate except_relate(relate e_R, relate e_S);     //except
relate intersect_relate(relate i_R, relate i_S);  //intersection
relate car_pro_relate(relate c_R, relate c_S);    //cartesian product


relate project_relate(relate p_R, char ch);     //projection
relate join_relate(relate j_R, relate j_S);        //join
relate div_relate(relate d_R ,relate d_S);         //division

#endif // COMMON_H_INCLUDED

看看效果:

posted @ 2011-03-10 14:32  涵曦  阅读(2462)  评论(0编辑  收藏  举报