Hive 执行计划
执行语句
hive> explain select s.id, s.name from student s left outer join student_tmp st on s.name = st.name;
结果,红色字体为我添加的注释
hive> explain select s.id, s.name from student s left outer join student_tmp st on s.name = st.name; OK ABSTRACT SYNTAX TREE: (TOK_QUERY (TOK_FROM (TOK_LEFTOUTERJOIN (TOK_TABREF (TOK_TABNAME student) s) (TOK_TABREF (TOK_TABNAME student_tmp) st) (= (. (TOK_TABLE_OR_COL s) name) (. (TOK_TABLE_OR_COL st) name)))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) id)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) name))))) STAGE DEPENDENCIES: “这个sql将被分成两个阶段执行。基本上每个阶段会对应一个mapreduce job,Stage-0除外。因为Stage-0只是fetch结果集,不需要mapreduce job” Stage-1 is a root stage Stage-0 is a root stage STAGE PLANS: Stage: Stage-1 Map Reduce Alias -> Map Operator Tree: “map job开始” s TableScan alias: s “扫描表student” Reduce Output Operator “这里描述map的输出,也就是reduce的输入。比如key,partition,sort等信息。” key expressions: “reduce job的key” expr: name type: string sort order: + “这里表示按一个字段排序,如果是按两个字段排序,那么就会有两个+(++),更多以此类推” Map-reduce partition columns: “partition的信息,由此也可以看出hive在join的时候会以join on后的列作为partition的列,以保证具有相同此列的值的行被分到同一个reduce中去” expr: name type: string tag: 0 “用于标示这个扫描的结果,后面的join会用到它” value expressions: “表示select 后面的列” expr: id type: int expr: name type: string st TableScan “开始扫描第二张表,和上面的一样” alias: st Reduce Output Operator key expressions: expr: name type: string sort order: + Map-reduce partition columns: expr: name type: string tag: 1 Reduce Operator Tree: “reduce job开始” Join Operator condition map: Left Outer Join0 to 1 “tag 0 out join tag 1” condition expressions: “这里也是描述select 后的列,和join没有关系。这里我们的select后的列是 s.id 和 s.name, 所以0后面有两个字段, 1后面没有” 0 {VALUE._col0} {VALUE._col2} 1 handleSkewJoin: false outputColumnNames: _col0, _col2 Select Operator expressions: expr: _col0 type: int expr: _col2 type: string outputColumnNames: _col0, _col1 File Output Operator compressed: false GlobalTableId: 0 table: input format: org.apache.hadoop.mapred.TextInputFormat output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat Stage: Stage-0 Fetch Operator limit: -1 Time taken: 0.216 seconds