day33--IO模型

前言:

  对于一个network IO (这里我们以read举例),它会涉及到两个系统对象,一个是调用这个IO的process (or thread),另一个就是系统内核(kernel)。当一个read操作发生时,它会经历两个阶段:

  •  等待数据准备 (Waiting for the data to be ready)
  •  将数据从内核拷贝到进程中 (Copying the data from the kernel to the process)

  记住这两点很重要,因为这些IO Model的区别就是在两个阶段上各有不同的情况。

一、阻塞IO

  在linux中,默认情况下所有的socket都是blocking,一个典型的读操作流程大概是这样:

  当用户进程调用了recvfrom这个系统调用,kernel(内核)就开始了IO的第一个阶段:准备数据。对于network io来说,很多时候数据在一开始还没有到达(比如,还没有收到一个完整的UDP包),这个时候kernel就要等待足够的数据到来。而在用户进程这边,整个进程会被阻塞。当kernel一直等到数据准备好了,它就会将数据从kernel中拷贝到用户内存,然后kernel返回结果,用户进程才解除block的状态,重新运行起来。
  所以,blocking IO的特点就是在IO执行的两个阶段都被block了。

  wait for data (阻塞)   copy data (阻塞)

 二、非阻塞IO

  linux下,可以通过设置socket使其变为non-blocking。当对一个non-blocking socket执行读操作时,流程是这个样子:

 

  

  从图中可以看出,当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block(阻塞)用户进程,而是立刻返回一个error。从用户进程角度讲 ,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果。用户进程判断结果是一个error时,它就知道数据还没有准备好,于是它可以再次发送read操作。一旦kernel中的数据准备好了,并且又再次收到了用户进程的system call,那么它马上就将数据拷贝到了用户内存,然后返回。所以,用户进程其实是需要不断的主动询问kernel数据好了没有。

 注意:

      在网络IO时候,非阻塞IO也会进行recvform系统调用,检查数据是否准备好,与阻塞IO不一样,”非阻塞将大的整片时间的阻塞分成N多的小的阻塞, 所以进程不断地有机会 ‘被’ CPU光顾”。即每次recvform系统调用之间,cpu的权限还在进程手中,这段时间是可以做其他事情的,

      也就是说非阻塞的recvform系统调用调用之后,进程并没有被阻塞,内核马上返回给进程,如果数据还没准备好,此时会返回一个error。进程在返回之后,可以干点别的事情,然后再发起recvform系统调用。重复上面的过程,循环往复的进行recvform系统调用。这个过程通常被称之为轮询。轮询检查内核数据,直到数据准备好,再拷贝数据到进程,进行数据处理。需要注意,拷贝数据整个过程,进程仍然是属于阻塞的状态。

import time
import socket
sk = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
sk.setsockopt
sk.bind(('127.0.0.1',6667))
sk.listen(5)
sk.setblocking(False)
while True:
    try:
        print ('waiting client connection .......')
        connection,address = sk.accept()   # 进程主动轮询
        print("+++",address)
        client_messge = connection.recv(1024)
        print(str(client_messge,'utf8'))
        connection.close()
    except Exception as e:
        print (e)
        time.sleep(4)

#############################client

import time
import socket
sk = socket.socket(socket.AF_INET,socket.SOCK_STREAM)

while True:
    sk.connect(('127.0.0.1',6667))
    print("hello")
    sk.sendall(bytes("hello","utf8"))
    time.sleep(2)
    break
View Code

  优点:能够在等待任务完成的时间里干其他活了(包括提交其他任务,也就是 “后台” 可以有多个任务在同时执行)。

  缺点:任务完成的响应延迟增大了,因为每过一段时间才去轮询一次read操作,而任务可能在两次轮询之间的任意时间完成。这会导致整体数据吞吐量的降低,没有在第一时间拿到数据。

       两个阶段:wait for data (非阻塞) copy data (阻塞)

 

三、IO多路复用

  IO multiplexing这个词可能有点陌生,但是如果我说select,epoll,大概就都能明白了。有些地方也称这种IO方式为event driven IO。我们都知道,select/epoll的好处就在于单个process就可以同时处理多个网络连接的IO。它的基本原理就是select/epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程。它的流程如图:

 

 

  当用户进程调用了select,那么整个进程会被block,而同时,kernel会“监视”所有select负责的socket,当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从kernel拷贝到用户进程。
  这个图和blocking IO的图其实并没有太大的不同,事实上,还更差一些。因为这里需要使用两个system call (select 和 recvfrom),而blocking IO只调用了一个system call (recvfrom)。但是,用select的优势在于它可以同时处理多个connection。(多说一句。所以,如果处理的连接数不是很高的话,使用select/epoll的web server不一定比使用(多线程)multi-threading + (阻塞IO)blocking IO的web server性能更好,可能延迟还更大。select/epoll的优势并不是对于单个连接能处理得更快,而是在于能处理更多的连接。
  在IO multiplexing Model(IO多路复用模块)中,实际中,对于每一个socket,一般都设置成为(非阻塞)non-blocking,但是,如上图所示,整个用户的process其实是一直被block(阻塞)的。只不过process是被select这个函数block,而不是被(套接字IO)socket IO给(阻塞)block。

  结论: select的优势在于可以处理多个连接,不适用于单个连接 

#***********************server.py

import socket
import select
sk=socket.socket()
sk.bind(("127.0.0.1",8800))
sk.listen(5)
sk.setblocking(False)
inputs=[sk,]

while True:
    r,w,e=select.select(inputs,[],[],5)
    print(len(r))

    for obj in r:
        if obj==sk:
            conn,add=obj.accept()
            print("conn:",conn)
            inputs.append(conn)
        else:

            data_byte=obj.recv(1024)
            print(str(data_byte,'utf8'))
            if not data_byte:
                inputs.remove(obj)
                continue
            inp=input('回答%s: >>>'%inputs.index(obj))
            obj.sendall(bytes(inp,'utf8'))

    print('>>',r)


#***********************client.py

import socket
sk=socket.socket()
sk.connect(('127.0.0.1',8802))

while True:
    inp=input(">>>>")   # how much one night?
    sk.sendall(bytes(inp,"utf8"))
    data=sk.recv(1024)
    print(str(data,'utf8'))
View Code

   思考1:select监听fd变化的过程

  用户进程创建socket对象,拷贝监听的fd到内核空间,每一个fd会对应一张系统文件表,内核空间的fd响应到数据后,就会发送信号给用户进程数据已到;用户进程再发送系统调用,比如(accept)将内核空间的数据copy到用户空间,同时作为接受数据端内核空间的数据清除,这样重新监听时fd再有新的数据又可以响应到了(发送端因为基于TCP协议所以需要收到应答后才会清除)

  思考2: 上面的示例中,开启三个客户端,分别连续向server端发送一个内容(中间server端不回应),结果会怎样,为什么?

  服务端不会回应第二个和第三个的内容,因为此时回应第一个客户端的请求进程还没有结束。

 

四、Asynchronous I/O(异步IO)

  linux下的asynchronous IO其实用得很少。先看一下它的流程:

  用户进程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从kernel的角度,当它受到一个asynchronous read之后,首先它会立刻返回,所以不会对用户进程产生任何block。然后,kernel会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,kernel会给用户进程发送一个signal,告诉它read操作完成了。

五、IO模型比较分析

  到目前为止,已经将四个IO Model都介绍完了。现在回过头来回答最初的那几个问题:blocking和non-blocking的区别、synchronous IO和asynchronous IO的区别在哪。
  先回答最简单的这个:(阻塞VS非阻塞)blocking vs non-blocking。前面的介绍中其实已经很明确的说明了这两者的区别。调用blocking IO会一直block住对应的进程直到操作完成,而non-blocking IO在kernel还准备数据的情况下会立刻返回

  再说明(同步IO)synchronous IO和(异步IO)asynchronous IO的区别之前,需要先给出两者的定义。Stevens给出的定义(其实是POSIX的定义)是这样子的:
  A synchronous I/O operation causes the requesting process to be blocked until that I/O operationcompletes;
  An asynchronous I/O operation does not cause the requesting process to be blocked; 
      两者的区别就在于synchronous IO做”IO operation”的时候会将process阻塞。按照这个定义,之前所述的(阻塞IO)blocking IO,(非阻塞IO)non-blocking IO,(IO多路复用)IO multiplexing都属于(同步IO)synchronous IO。有人可能会说,non-blocking IO并没有被block啊。这里有个非常“狡猾”的地方,定义中所指的”IO operation”是指真实的IO操作,就是例子中的recvfrom这个system call。non-blocking IO在执行recvfrom这个system call的时候,如果kernel的数据没有准备好,这时候不会block进程。但是,当kernel中数据准备好的时候,recvfrom会将数据从kernel拷贝到用户内存中,这个时候进程是被block了,在这段时间内,进程是被block的。而asynchronous IO则不一样,当进程发起IO 操作之后,就直接返回再也不理睬了,直到kernel发送一个信号,告诉进程说IO完成。在这整个过程中,进程完全没有被block。

  各个IO Model的比较如图所示:

 

 

 

  经过上面的介绍,会发现non-blocking IO和asynchronous IO的区别还是很明显的。在non-blocking IO中,虽然进程大部分时间都不会被block,但是它仍然要求进程去主动的check,并且当数据准备完成以后,也需要进程主动的再次调用recvfrom来将数据拷贝到用户内存。而asynchronous IO则完全不同。它就像是用户进程将整个IO操作交给了他人(kernel)完成,然后他人做完后发信号通知。在此期间,用户进程不需要去检查IO操作的状态,也不需要主动的去拷贝数据。

 

posted @ 2017-07-27 14:18  _慕  阅读(121)  评论(0编辑  收藏  举报
Title
返回顶部