[LeetCode] All Paths From Source to Target 从起点到目标点到所有路径
Given a directed, acyclic graph of N
nodes. Find all possible paths from node 0
to node N-1
, and return them in any order.
The graph is given as follows: the nodes are 0, 1, ..., graph.length - 1. graph[i] is a list of all nodes j for which the edge (i, j) exists.
Example: Input: [[1,2], [3], [3], []] Output: [[0,1,3],[0,2,3]] Explanation: The graph looks like this: 0--->1 | | v v 2--->3 There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.
Note:
- The number of nodes in the graph will be in the range
[2, 15]
. - You can print different paths in any order, but you should keep the order of nodes inside one path.
这道题给了我们一个无回路有向图,包含N个结点,然后让我们找出所有可能的从结点0到结点N-1的路径。这个图的数据是通过一个类似邻接链表的二维数组给的,最开始的时候博主没看懂输入数据的意思,其实很简单,我们来看例子中的input,[[1,2], [3], [3], []],这是一个二维数组,最外层的数组里面有四个小数组,每个小数组其实就是和当前结点相通的邻结点,由于是有向图,所以只能是当前结点到邻结点,反过来不一定行。那么结点0的邻结点就是结点1和2,结点1的邻结点就是结点3,结点2的邻结点也是3,结点3没有邻结点。那么其实这道题的本质就是遍历邻接链表,由于要列出所有路径情况,那么递归就是不二之选了。我们用cur来表示当前遍历到的结点,初始化为0,然后在递归函数中,先将其加入路径path,如果cur等于N-1了,那么说明到达结点N-1了,将path加入结果res。否则我们再遍历cur的邻接结点,调用递归函数即可,参见代码如下:
解法一:
class Solution { public: vector<vector<int>> allPathsSourceTarget(vector<vector<int>>& graph) { vector<vector<int>> res; helper(graph, 0, {}, res); return res; } void helper(vector<vector<int>>& graph, int cur, vector<int> path, vector<vector<int>>& res) { path.push_back(cur); if (cur == graph.size() - 1) res.push_back(path); else for (int neigh : graph[cur]) helper(graph, neigh, path, res); } };
下面这种解法也是递归,不过写法稍有不同,递归函数直接返回结果,这样参数就少了许多,但是思路还是一样的,如果cur等于N-1了,直接将cur先装入数组,再装入结果res中返回。否则就遍历cur的邻接结点,对于每个邻接结点,先调用递归函数,然后遍历其返回的结果,对于每个遍历到的path,将cur加到数组首位置,然后将path加入结果res中即可,这有点像是回溯的思路,路径是从后往前组成的,参见代码如下:
解法二:
class Solution { public: vector<vector<int>> allPathsSourceTarget(vector<vector<int>>& graph) { return helper(graph, 0); } vector<vector<int>> helper(vector<vector<int>>& graph, int cur) { if (cur == graph.size() - 1) { return {{graph.size() - 1}}; } vector<vector<int>> res; for (int neigh : graph[cur]) { for (auto path : helper(graph, neigh)) { path.insert(path.begin(), cur); res.push_back(path); } } return res; } };
类似题目:
https://leetcode.com/problems/all-paths-from-source-to-target/solution/
https://leetcode.com/problems/all-paths-from-source-to-target/discuss/121135/6-lines-C++-dfs