[LeetCode] 765. Couples Holding Hands 两两握手

 

N couples sit in 2N seats arranged in a row and want to hold hands. We want to know the minimum number of swaps so that every couple is sitting side by side. A swap consists of choosing any two people, then they stand up and switch seats.

The people and seats are represented by an integer from 0 to 2N-1, the couples are numbered in order, the first couple being (0, 1), the second couple being (2, 3), and so on with the last couple being (2N-2, 2N-1).

The couples' initial seating is given by row[i] being the value of the person who is initially sitting in the i-th seat.

Example 1:

Input: row = [0, 2, 1, 3]
Output: 1
Explanation: We only need to swap the second (row[1]) and third (row[2]) person.

 

Example 2:

Input: row = [3, 2, 0, 1]
Output: 0
Explanation: All couples are already seated side by side.

 

Note:

  1. len(row) is even and in the range of [4, 60].
  2. row is guaranteed to be a permutation of 0...len(row)-1.

 

这道题给了我们一个长度为n的数组,里面包含的数字是 [0, n-1] 范围内的数字各一个,让通过调换任意两个数字的位置,使得相邻的奇偶数靠在一起。因为要两两成对,所以题目限定了输入数组必须是偶数个。要明确的是,组成对儿的两个是从0开始,每两个一对儿的。比如0和1,2和3,像1和2就不行。而且检测的时候也是两个数两个数的检测,左右顺序无所谓,比如2和3,或者3和2都行。当暂时对如何用代码来解决问题没啥头绪的时候,一个很好的办法是,先手动解决问题,意思是,假设这道题不要求你写代码,就让你按照要求排好序怎么做。随便举个例子来说吧,比如:

[3   1   4   0   2   5]

如何将其重新排序呢?首先明确,交换数字位置的动机是要凑对儿,如果交换的两个数字无法组成新对儿,那么这个交换就毫无意义。来手动交换吧,两个两个的来看数字,前两个数是3和1,知道其不成对儿,数字3的老相好是2,不是1,那么怎么办呢?就把1和2交换位置呗。好,那么现在3和2牵手成功,度假去了,再来看后面的:

[3   2   4   0   1   5]

再取两数字,4和0,互不认识!4跟5有一腿儿,不是0,那么就把0和5,交换一下吧,得到:

[3   2   4   5   1   0]

好了,再取最后两个数字,1和0,两口子,不用动!前面都成对的话,最后两个数字一定成对。而且这种方法所用的交换次数一定是最少的,不要问博主怎么证明,博主也不会 |||-.-~ 明眼人应该已经看出来了,这就是一种贪婪算法 Greedy Algorithm。思路有了,代码就很容易写了,注意这里在找老伴儿时用了一个 trick,一个数 ‘异或’ 上1就是其另一个位,这个不难理解,如果是偶数的话,最后位是0,‘异或’上1等于加了1,变成了可以的成对奇数。如果是奇数的话,最后位是1,‘异或’上1后变为了0,变成了可以的成对偶数。参见代码如下:

 

解法一:

class Solution {
public:
    int minSwapsCouples(vector<int>& row) {
        int res = 0, n = row.size();
        for (int i = 0; i < n; i += 2) {
            if (row[i + 1] == (row[i] ^ 1)) continue;
            ++res;
            for (int j = i + 1; j < n; ++j) {
                if (row[j] == (row[i] ^ 1)) {
                    row[j] = row[i + 1];
                    row[i + 1] = row[i] ^ 1;
                    break;
                }
            }
        }
        return res;
    }
};

 

下面来看一种使用联合查找 Union Find 的解法。该解法对于处理群组问题时非常有效,比如岛屿数量有关的题就经常使用 UF 解法。核心思想是用一个 root 数组,每个点开始初始化为不同的值,如果两个点属于相同的组,就将其中一个点的 root 值赋值为另一个点的位置,这样只要是相同组里的两点,通过 find 函数会得到相同的值。 那么如果总共有n个数字,则共有 n/2 对儿,所以初始化 n/2 个群组,还是每次处理两个数字。每个数字除以2就是其群组号,那么属于同一组的两个数的群组号是相同的,比如2和3,其分别除以2均得到1,所以其组号均为1。那么这对解题有啥作用呢?作用忒大了,由于每次取的是两个数,且计算其群组号,并调用 find 函数,那么如果这两个数的群组号相同,那么 find 函数必然会返回同样的值,不用做什么额外动作,因为本身就是一对儿。如果两个数不是一对儿,那么其群组号必然不同,在二者没有归为一组之前,调用 find 函数返回的值就不同,此时将二者归为一组,并且 cnt 自减1,忘说了,cnt 初始化为总群组数,即 n/2。那么最终 cnt 减少的个数就是交换的步数,但是这里为了简便,直接用个 res 变量来统计群组减少的个数,还是用上面讲解中的例子来说明吧:

[3   1   4   0   2   5]

最开始的群组关系是:

群组0:0,1

群组1:2,3

群组2:4,5

取出前两个数字3和1,其群组号分别为1和0,带入 find 函数返回不同值,则此时将群组0和群组1链接起来,变成一个群组,则此时只有两个群组了,res 自增1,变为了1。

群组0 & 1:0,1,2,3

群组2:4,5

此时取出4和0,其群组号分别为2和0,带入 find 函数返回不同值,则此时将群组 0&1 和群组2链接起来,变成一个超大群组,res 自增1,变为了2。

群组0 & 1 & 2:0,1,2,3,4,5

此时取出最后两个数2和5,其群组号分别为1和2,因为此时都是一个大组内的了,带入 find 函数返回相同的值,不做任何处理。最终交换的步数就是 res 值,为2,参见代码如下:

 

解法二:

class Solution {
public:
    int minSwapsCouples(vector<int>& row) {
        int res = 0, n = row.size();
        vector<int> root(n, 0);
        for (int i = 0; i < n; ++i) root[i] = i;
        for (int i = 0; i < n; i += 2) {
            int x = find(root, row[i] / 2);
            int y = find(root, row[i + 1] / 2);
            if (x != y) {
                root[x] = y;
                ++res;
            }
        }
        return res;
    }
    int find(vector<int>& root, int i) {
        return (i == root[i]) ? i : find(root, root[i]);
    }
};

 

下面这种使用 HashMap 的解法,本质其实也是联合查找 Union Find。只有群组里面是数字,才能使用 root 数组,有些非数字的情况,比如字符串,就要使用 HashMap 了,当然数字也是可以使用 HashMap 的。这里的 helper 子函数相当于同时包括了链接群组和 find 查找两部分,在主函数中,还是两个两个处理,并且把群组号带入 helper 函数,在 helper 函数中,将较小数和较大数区分出来,如果二者相同,表明是同一个群组的,不做任何处理,直接返回。否则的话,建立二者的映射,这就是上面解法中的链接群组操作,这样看出来了吧,二者的本质其实是一样的,参见代码如下:

 

解法三:

class Solution {
public:
    int minSwapsCouples(vector<int>& row) {
        unordered_map<int, int> m;
        for (int i = 0; i < row.size(); i += 2) {
            helper(m, row[i] / 2, row[i + 1] / 2);
        }
        return m.size();
    }
    void helper(unordered_map<int, int>& m, int x, int y) {
        int c1 = min(x, y), c2 = max(x, y);
        if (c1 == c2) return;
        if (m.count(c1)) helper(m, m[c1], c2);
        else m[c1] = c2;
    }
};

 

这道题的一个 Follow up 就是 fun4LeetCode 大神的帖子 中讨论的N整数问题 N Integers Problems,简单来说就是最少使用几步可以将所有的数字移回其正确位置,比如数组 [0 3 1 2] 变回 [0 1 2 3] 需要几步,两步就够了,先交换3和2,变成 [0 2 1 3],再交换2和1,变回 [0 1 2 3]。怎么做呢?实际上在遍历某一个位置i,如果发现 i != rows[i],就不同的通过交换i和 rows[i],然后让 row[i] 等于 row[row[i]],使其最终相等,是不是也有点 Union Find 的影子在里面呢?真是很有趣呢~面白以~

 

Github 同步地址:

https://github.com/grandyang/leetcode/issues/765

 

类似题目:

Missing Number

First Missing Positive

 

参考资料:

https://leetcode.com/problems/couples-holding-hands/

https://leetcode.com/problems/couples-holding-hands/discuss/113353/Monster-Style-C++-O(n)-unordered_map

https://leetcode.com/problems/couples-holding-hands/discuss/117520/Java-union-find-easy-to-understand-5-ms

https://leetcode.com/problems/couples-holding-hands/discuss/113362/JavaC++-O(N)-solution-using-cyclic-swapping

 

LeetCode All in One 题目讲解汇总(持续更新中...)

posted @ 2018-04-04 12:31  Grandyang  阅读(6685)  评论(5编辑  收藏  举报
Fork me on GitHub