[LeetCode] 738. Monotone Increasing Digits 单调递增数字

 

Given a non-negative integer N, find the largest number that is less than or equal to N with monotone increasing digits.

(Recall that an integer has monotone increasing digits if and only if each pair of adjacent digits x and y satisfy x <= y.)

 

Example 1:

Input: N = 10
Output: 9

 

Example 2:

Input: N = 1234
Output: 1234

 

Example 3:

Input: N = 332
Output: 299

 

Note: N is an integer in the range [0, 10^9].

 

这道题给了一个非负数,让我们求一个数字小于等于给定数字,且该数字各位上的数字是单调递增的。先来分析题目中给的几个例子吧,首先如果是 10 的话,由于1大于0,所以不是单调自增的,那么返回的数就是9。第二个例子是 1234,各位上已经满足单调自增的条件了,返回原数即可。第三个例子是 332,最后一位2小于之前的3,那么此时将前面位减1,先变成322,再往前看,还是小于前面的3,那么再将前面位减1,就变成了 222,此时 222 不是最大的单调递增数,可以将后面两位变成9,于是乎就有了 299,小于给定的 332,符合题意。如果给定的数字是 232,那么就会得到 229,这样可以发现规律,要找到从后往前遍历的最后一个值升高的位置,让前一位减1,并把当前位以及后面的所有位都变成9,就可以得到最大的单调递增数啦。

用j表示最后一个值升高的位置,具体来说应该是其前一位的值大,初始化为总位数n,然后从后往前遍历,因为每次要和前一位比较,为防止越界,应遍历到第二个数停止,如果当前位大于等于前一位,符合单调递增,直接跳过;否则就将前一位自减1,j赋值为当前位i,循环结束后,从j位到末尾的位数都改为9即可,参见代码如下:

 

class Solution {
public:
    int monotoneIncreasingDigits(int N) {
        string str = to_string(N);
        int n = str.size(), j = n;
        for (int i = n - 1; i > 0; --i) {
            if (str[i] >= str[i - 1]) continue;
            --str[i - 1];
            j = i;
        }        
        for (int i = j; i < n; ++i) {
            str[i] = '9';
        }
        return stoi(str);
    }
};

 

Github 同步地址:

https://github.com/grandyang/leetcode/issues/738

 

类似题目:

Remove K Digits

 

参考资料:

https://leetcode.com/problems/monotone-increasing-digits/

https://leetcode.com/problems/monotone-increasing-digits/discuss/109811/Simple-and-very-short-C%2B%2B-solution

 

LeetCode All in One 题目讲解汇总(持续更新中...)

posted @ 2017-12-19 23:43  Grandyang  阅读(4931)  评论(2编辑  收藏  举报
Fork me on GitHub