[LeetCode] Convex Polygon 凸多边形

 

Given a list of points that form a polygon when joined sequentially, find if this polygon is convex (Convex polygon definition).

Note:

  1. There are at least 3 and at most 10,000 points.
  2. Coordinates are in the range -10,000 to 10,000.
  3. You may assume the polygon formed by given points is always a simple polygon (Simple polygon definition). In other words, we ensure that exactly two edges intersect at each vertex, and that edges otherwise don't intersect each other.

Example 1:

[[0,0],[0,1],[1,1],[1,0]]

Answer: True

Explanation:

Example 2:

[[0,0],[0,10],[10,10],[10,0],[5,5]]

Answer: False

Explanation:

 

这道题让我们让我们判断一个多边形是否为凸多边形,我想关于凸多边形的性质,我大天朝的初中几何就应该有所涉猎啦吧,忘了的去面壁。就是所有的顶点角都不大于180度。那么我们该如何快速验证这一个特点呢,学过计算机图形学或者是图像处理的课应该对计算法线normal并不陌生吧,计算的curve的法向量是非常重要的手段,一段连续曲线可以离散看成许多离散点组成,而相邻的三个点就是最基本的单位,我们可以算由三个点组成的一小段曲线的法线方向,而凸多边形的每个三个相邻点的法向量方向都应该相同,要么同正,要么同负。那么我们只要遍历每个点,然后取出其周围的两个点计算法线方向,然后跟之前的方向对比,如果不一样,直接返回false。这里我们要特别注意法向量为0的情况,如果某一个点的法向量算出来为0,那么正确的pre就会被覆盖为0,后面再遇到相反的法向就无法检测出来,所以我们对计算出来法向量为0的情况直接跳过即可,参见代码如下:

 

class Solution {
public:
    bool isConvex(vector<vector<int>>& points) {
        long long n = points.size(), pre = 0, cur = 0;
        for (int i = 0; i < n; ++i) {
            int dx1 = points[(i + 1) % n][0] - points[i][0];
            int dx2 = points[(i + 2) % n][0] - points[i][0];
            int dy1 = points[(i + 1) % n][1] - points[i][1];
            int dy2 = points[(i + 2) % n][1] - points[i][1];
            cur = dx1 * dy2 - dx2 * dy1;
            if (cur != 0) {
                if (cur * pre < 0) return false;
                else pre = cur;
            }
        }
        return true;
    }
};

 

参考资料:

https://discuss.leetcode.com/topic/70643/i-believe-this-time-it-s-far-beyond-my-ability-to-get-a-good-grade-of-the-contest

https://discuss.leetcode.com/topic/70664/c-7-line-o-n-solution-to-check-convexity-with-cross-product-of-adajcent-vectors-detailed-explanation/2

 

LeetCode All in One 题目讲解汇总(持续更新中...)

posted @ 2016-12-08 22:29  Grandyang  阅读(8457)  评论(3编辑  收藏  举报
Fork me on GitHub