[LeetCode] 302. Smallest Rectangle Enclosing Black Pixels 包含黑像素的最小矩阵
An image is represented by a binary matrix with 0
as a white pixel and 1
as a black pixel. The black pixels are connected, i.e., there is only one black region. Pixels are connected horizontally and vertically. Given the location (x, y)
of one of the black pixels, return the area of the smallest (axis-aligned) rectangle that encloses all black pixels.
Example:
Input: [ "0010", "0110", "0100" ] andx = 0,
y = 2
Output: 6
这道题给我们一个二维矩阵,表示一个图片的数据,其中1代表黑像素,0代表白像素,现在让找出一个最小的矩阵可以包括所有的黑像素,还给了一个黑像素的坐标,先来看 Brute Force 的方法,这种方法的效率不高,遍历了整个数组,如果遇到了1,就更新矩形,参见代码如下:
解法一:
// Brute force class Solution { public: int minArea(vector<vector<char>>& image, int x, int y) { int left = y, right = y, up = x, down = x; for (int i = 0; i < image.size(); ++i) { for (int j = 0; j < image[i].size(); ++j) { if (image[i][j] == '1') { left = min(left, j); right = max(right, j); up = min(up, i); down = max(down, i); } } } return (right - left + 1) * (down - up + 1); } };
下面这种解法是解法一的递归写法,本质上来说跟上面的解法没有啥区别,也没有任何的优化,所以仍然可以认为是暴力搜索法,参见代码如下:
解法二:
// DFS class Solution { public: int minArea(vector<vector<char>>& image, int x, int y) { int left = y, right = y, up = x, down = x; dfs(image, x, y, left, right, up, down); return (right - left + 1) * (down - up + 1); } void dfs(vector<vector<char>> &image, int x, int y, int &left, int &right, int &up, int &down) { if (x < 0 || x >= image.size() || y < 0 || y >= image[0].size() || image[x][y] != '1') return; left = min(left, y); right = max(right, y); up = min(up, x); down = max(down, x); image[x][y] = '2'; dfs(image, x + 1, y, left, right, up, down); dfs(image, x - 1, y, left, right, up, down); dfs(image, x, y + 1, left, right, up, down); dfs(image, x, y - 1, left, right, up, down); } };
我们再来看一种优化了时间复杂度的解法,这是一种二分搜索法,以给定的一个黑像素 (x, y) 为中心,分别用二分法快速找到整个黑色区域的上下左右的临界点,然后直接算出面积。首先来看上边界怎么找,既然是以 (x, y) 为中心,而且上边界又是某个行数,那么其范围肯定在 [0, x] 之间,能成为上边界的条件是该行中至少有一个点是1,那么其列数的范围就在 [0, n] 之间,在进行二分搜索的时候,先根据i, j算出中间行 mid,然后列数从0开始遍历,直到找到为1的点,或者越界位置,然后判断列数是否越界,越界的话,说明当前行没有1,此时更新i为 mid+1,如果找到了1,那么更新j为 mid。找下边界也是同样的道理,但是跟上边界稍微又些不同的地方是,如果当前行找到了1,应该再往下找,那么i应该更新为 mid+1;如果没找到,就应该往上找,靠近 (x, y) 点;所以两种情况只是在二分法更新范围的地方正好相反,所以可以用一个 bool 型的变量 opt 来决定还如何更新行数。
下面来看如何确定左边界和右边界,其实跟确定上下边界大同小异。左边界是列数,若以 (x, y) 点为中心,那么其范围便是 [0, y],因为之前已经确定了上下边界 up 和 down 了,所以左边界点的行数范围就是 [up, down],同理,当通过i, j求出了中间列 mid 时,就要遍历该列,找到为1的点,所以此时是用 image[k][mid],而在找上下边界时,用的是 image[mid][k],还是顺序不一样,可以用另外一个 bool 型变量h来控制,h表示 horizontal,就是水平遍历的意思。这样通过两个 bool 型变量就可以用一个函数来涵盖四种情况的二分搜索,是不是很叼?下面更新i或j的时候参考上下边界的分析,应该不难理解,参见代码如下:
解法三:
// Binary Search class Solution { public: int minArea(vector<vector<char>>& image, int x, int y) { int m = image.size(), n = image[0].size(); int up = binary_search(image, true, 0, x, 0, n, true); int down = binary_search(image, true, x + 1, m, 0, n, false); int left = binary_search(image, false, 0, y, up, down, true); int right = binary_search(image, false, y + 1, n, up, down, false); return (right - left) * (down - up); } int binary_search(vector<vector<char>> &image, bool h, int i, int j, int low, int high, bool opt) { while (i < j) { int k = low, mid = (i + j) / 2; while (k < high && (h ? image[mid][k] : image[k][mid]) == '0') ++k; if (k < high == opt) j = mid; else i = mid + 1; } return i; } };
参考资料:
https://leetcode.com/problems/smallest-rectangle-enclosing-black-pixels/