[LeetCode] 115. Distinct Subsequences 不同的子序列

 

Given two strings s and t, return the number of distinct subsequences of s which equals t.

The test cases are generated so that the answer fits on a 32-bit signed integer.

 

Example 1:

Input: s = "rabbbit", t = "rabbit"
Output: 3
Explanation:
As shown below, there are 3 ways you can generate "rabbit" from s.
rabbbit
rabbbit
rabbbit

Example 2:

Input: s = "babgbag", t = "bag"
Output: 5
Explanation:
As shown below, there are 5 ways you can generate "bag" from s.
babgbag
babgbag
babgbag
babgbag
babgbag
  

Constraints:

  • 1 <= s.length, t.length <= 1000
  • s and t consist of English letters.

 

看到有关字符串的子序列或者配准类的问题,首先应该考虑的就是用动态规划 Dynamic Programming 来求解,这个应成为条件反射。而所有 DP 问题的核心就是找出状态转移方程,想这道题就是递推一个二维的 dp 数组,其中 dp[i][j] 表示s中前j个字符形成的的子串中能组成t中前i个字符形成的子串的子序列的个数。下面从题目中给的例子来分析,这个二维 dp 数组应为:

 

  Ø r a b b b i t
Ø 1 1 1 1 1 1 1 1
r 0 1 1 1 1 1 1 1
a 0 0 1 1 1 1 1 1
b 0 0 0 1 2 3 3 3
b 0 0 0 0 1 3 3 3
i 0 0 0 0 0 0 3 3
t 0 0 0 0 0 0 0 3 

 

首先,若原字符串和子序列都为空时,返回1,因为空串也是空串的一个子序列。若原字符串不为空,而子序列为空,也返回1,因为空串也是任意字符串的一个子序列。而当原字符串为空,子序列不为空时,返回0,因为非空字符串不能当空字符串的子序列。理清这些,二维数组 dp 的边缘便可以初始化了,下面只要找出状态转移方程,就可以更新整个 dp 数组了。我们通过观察上面的二维数组可以发现,当更新到 dp[i][j] 时,dp[i][j] >= dp[i][j - 1] 总是成立,再进一步观察发现,当 T[i - 1] == S[j - 1] 时,dp[i][j] = dp[i][j - 1] + dp[i - 1][j - 1],若不等, dp[i][j] = dp[i][j - 1],所以,综合以上,递推式为:

dp[i][j] = dp[i][j - 1] + (T[i - 1] == S[j - 1] ? dp[i - 1][j - 1] : 0)

根据以上分析,可以写出代码如下:

 

class Solution {
public:
    int numDistinct(string s, string t) {
        int m = s.size(), n = t.size();
        vector<vector<unsigned long>> dp(n + 1, vector<unsigned long>(m + 1));
        for (int j = 0; j <= m; ++j) dp[0][j] = 1;
        for (int i = 1; i <= n; ++i) {
            for (int j = 1; j <= m; ++j) {
                dp[i][j] = dp[i][j - 1] + (t[i - 1] == s[j - 1] ? dp[i - 1][j - 1] : 0);
            }
        }
        return dp[n][m];
    }
};

 

Github 同步地址:

https://github.com/grandyang/leetcode/issues/115

 

参考资料:

https://leetcode.com/problems/distinct-subsequences/

https://leetcode.com/problems/distinct-subsequences/discuss/37327/Easy-to-understand-DP-in-Java

https://leetcode.com/problems/distinct-subsequences/discuss/37412/Any-better-solution-that-takes-less-than-O(n2)-space-while-in-O(n2)-time

 

LeetCode All in One 题目讲解汇总(持续更新中...)

posted @ 2015-02-16 14:50  Grandyang  阅读(15756)  评论(11编辑  收藏  举报
Fork me on GitHub