[LeetCode] 162. Find Peak Element 求数组的局部峰值
A peak element is an element that is strictly greater than its neighbors.
Given an integer array nums
, find a peak element, and return its index. If the array contains multiple peaks, return the index to any of the peaks.
You may imagine that nums[-1] = nums[n] = -∞
.
You must write an algorithm that runs in O(log n)
time.
Example 1:
Input: nums = [1,2,3,1] Output: 2 Explanation: 3 is a peak element and your function should return the index number 2.
Example 2:
Input: nums = [1,2,1,3,5,6,4] Output: 5 Explanation: Your function can return either index number 1 where the peak element is 2, or index number 5 where the peak element is 6.
Constraints:
1 <= nums.length <= 1000
-2^31 <= nums[i] <= 2^31 - 1
nums[i] != nums[i + 1]
for all validi
.
这道题是求数组的一个峰值,如果这里用遍历整个数组找最大值肯定会出现 Time Limit Exceeded,但题目中说了这个峰值可以是局部的最大值,所以只需要找到第一个局部峰值就可以了。所谓峰值就是比周围两个数字都大的数字,那么只需要跟周围两个数字比较就可以了。既然要跟左右的数字比较,就得考虑越界的问题,题目中给了 nums[-1] = nums[n] = -∞,其实可以把这两个整型最小值直接加入到数组中,然后从第二个数字遍历到倒数第二个数字,这样就不会存在越界的可能了。由于题目中说了峰值一定存在,那么有一个很重要的 corner case 要注意,就是当原数组中只有一个数字,且是整型最小值的时候,我们如果还要首尾垫数字,就会形成一条水平线,从而没有峰值了,所以我们对于数组中只有一个数字的情况在开头直接判断一下即可,参见代码如下:
C++ 解法一:
class Solution { public: int findPeakElement(vector<int>& nums) { if (nums.size() == 1) return 0; nums.insert(nums.begin(), INT_MIN); nums.push_back(INT_MIN); for (int i = 1; i < (int)nums.size() - 1; ++i) { if (nums[i] > nums[i - 1] && nums[i] > nums[i + 1]) return i - 1; } return -1; } };
Java 解法一:
class Solution { public int findPeakElement(int[] nums) { if (nums.length == 1) return 0; int[] newNums = new int[nums.length + 2]; System.arraycopy(nums, 0, newNums, 1, nums.length); newNums[0] = Integer.MIN_VALUE; newNums[newNums.length - 1] = Integer.MIN_VALUE; for (int i = 1; i < newNums.length - 1; ++i) { if (newNums[i] > newNums[i - 1] && newNums[i] > newNums[i + 1]) return i - 1; } return -1; } }
我们可以对上面的线性扫描的方法进行一些优化,可以省去首尾垫值的步骤。由于题目中说明了局部峰值一定存在,那么实际上可以从第二个数字开始往后遍历,如果第二个数字比第一个数字小,说明此时第一个数字就是一个局部峰值;否则就往后继续遍历,现在是个递增趋势,如果此时某个数字小于前面那个数字,说明前面数字就是一个局部峰值,返回位置即可。如果循环结束了,说明原数组是个递增数组,返回最后一个位置即可,参见代码如下:
C++ 解法二:
class Solution { public: int findPeakElement(vector<int>& nums) { for (int i = 1; i < nums.size(); ++i) { if (nums[i] < nums[i - 1]) return i - 1; } return nums.size() - 1; } };
Java 解法二:
public class Solution { public int findPeakElement(int[] nums) { for (int i = 1; i < nums.length; ++i) { if (nums[i] < nums[i - 1]) return i - 1; } return nums.length - 1; } }
由于题目中提示了要用对数级的时间复杂度,那么我们就要考虑使用类似于二分查找法来缩短时间,由于只是需要找到任意一个峰值,则在确定二分查找折半后中间那个元素后,和紧跟的那个元素比较下大小,如果大于,则说明峰值在前面,如果小于则在后面。这样就可以找到一个峰值了,代码如下:
C++ 解法三:
class Solution { public: int findPeakElement(vector<int>& nums) { int left = 0, right = nums.size() - 1; while (left < right) { int mid = left + (right - left) / 2; if (nums[mid] < nums[mid + 1]) left = mid + 1; else right = mid; } return right; } };
Java 解法三:
public class Solution { public int findPeakElement(int[] nums) { int left = 0, right = nums.length - 1; while (left < right) { int mid = left + (right - left) / 2; if (nums[mid] < nums[mid + 1]) left = mid + 1; else right = mid; } return right; } }
Github 同步地址:
https://github.com/grandyang/leetcode/issues/162
类似题目:
Peak Index in a Mountain Array
Find a Peak Element II
Pour Water Between Buckets to Make Water Levels Equal
Count Hills and Valleys in an Array
参考资料:
https://leetcode.com/problems/find-peak-element