[LeetCode] 162. Find Peak Element 求数组的局部峰值

 

A peak element is an element that is strictly greater than its neighbors.

Given an integer array nums, find a peak element, and return its index. If the array contains multiple peaks, return the index to any of the peaks.

You may imagine that nums[-1] = nums[n] = -∞.

You must write an algorithm that runs in O(log n) time.

 

Example 1:

Input: nums = [1,2,3,1]
Output: 2
Explanation: 3 is a peak element and your function should return the index number 2.

Example 2:

Input: nums = [1,2,1,3,5,6,4]
Output: 5
Explanation: Your function can return either index number 1 where the peak element is 2, or index number 5 where the peak element is 6.

 

Constraints:

  • 1 <= nums.length <= 1000
  • -2^31 <= nums[i] <= 2^31 - 1
  • nums[i] != nums[i + 1] for all valid i.

 

这道题是求数组的一个峰值,如果这里用遍历整个数组找最大值肯定会出现 Time Limit Exceeded,但题目中说了这个峰值可以是局部的最大值,所以只需要找到第一个局部峰值就可以了。所谓峰值就是比周围两个数字都大的数字,那么只需要跟周围两个数字比较就可以了。既然要跟左右的数字比较,就得考虑越界的问题,题目中给了 nums[-1] = nums[n] = -∞,其实可以把这两个整型最小值直接加入到数组中,然后从第二个数字遍历到倒数第二个数字,这样就不会存在越界的可能了。由于题目中说了峰值一定存在,那么有一个很重要的 corner case 要注意,就是当原数组中只有一个数字,且是整型最小值的时候,我们如果还要首尾垫数字,就会形成一条水平线,从而没有峰值了,所以我们对于数组中只有一个数字的情况在开头直接判断一下即可,参见代码如下:

 

C++ 解法一:

class Solution {
public:
    int findPeakElement(vector<int>& nums) {
        if (nums.size() == 1) return 0;
        nums.insert(nums.begin(), INT_MIN);
        nums.push_back(INT_MIN);
        for (int i = 1; i < (int)nums.size() - 1; ++i) {
            if (nums[i] > nums[i - 1] && nums[i] > nums[i + 1]) return i - 1;
        }
        return -1;
    }
};

 

Java 解法一:

class Solution {
    public int findPeakElement(int[] nums) {
        if (nums.length == 1) return 0;
        int[] newNums = new int[nums.length + 2];
        System.arraycopy(nums, 0, newNums, 1, nums.length);
        newNums[0] = Integer.MIN_VALUE;
        newNums[newNums.length - 1] = Integer.MIN_VALUE;
        for (int i = 1; i < newNums.length - 1; ++i) {
            if (newNums[i] > newNums[i - 1] && newNums[i] > newNums[i + 1]) return i - 1;
        }
        return -1;
    }
}

 

我们可以对上面的线性扫描的方法进行一些优化,可以省去首尾垫值的步骤。由于题目中说明了局部峰值一定存在,那么实际上可以从第二个数字开始往后遍历,如果第二个数字比第一个数字小,说明此时第一个数字就是一个局部峰值;否则就往后继续遍历,现在是个递增趋势,如果此时某个数字小于前面那个数字,说明前面数字就是一个局部峰值,返回位置即可。如果循环结束了,说明原数组是个递增数组,返回最后一个位置即可,参见代码如下:

 

C++ 解法二:

class Solution {
public:
    int findPeakElement(vector<int>& nums) {
        for (int i = 1; i < nums.size(); ++i) {
            if (nums[i] < nums[i - 1]) return i - 1;
        }
        return nums.size() - 1;
    }
};

   

Java 解法二:

public class Solution {
    public int findPeakElement(int[] nums) {
        for (int i = 1; i < nums.length; ++i) {
            if (nums[i] < nums[i - 1]) return i - 1;
        }
        return nums.length - 1;
    }
}

 

由于题目中提示了要用对数级的时间复杂度,那么我们就要考虑使用类似于二分查找法来缩短时间,由于只是需要找到任意一个峰值,则在确定二分查找折半后中间那个元素后,和紧跟的那个元素比较下大小,如果大于,则说明峰值在前面,如果小于则在后面。这样就可以找到一个峰值了,代码如下:

 

C++ 解法三:

class Solution {
public:
    int findPeakElement(vector<int>& nums) {
        int left = 0, right = nums.size() - 1;
        while (left < right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] < nums[mid + 1]) left = mid + 1;
            else right = mid;
        }
        return right;
    }
};

 

Java 解法三:

public class Solution {
    public int findPeakElement(int[] nums) {
        int left = 0, right = nums.length - 1;
        while (left < right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] < nums[mid + 1]) left = mid + 1;
            else right = mid;
        }
        return right;
    }
}

 

Github 同步地址:

https://github.com/grandyang/leetcode/issues/162

 

类似题目:

Peak Index in a Mountain Array

Find a Peak Element II

Pour Water Between Buckets to Make Water Levels Equal

Count Hills and Valleys in an Array

 

参考资料:

https://leetcode.com/problems/find-peak-element

https://leetcode.com/problems/find-peak-element/discuss/50232/find-the-maximum-by-binary-search-recursion-and-iteration

 

LeetCode All in One 题目讲解汇总(持续更新中...)

posted @ 2015-01-11 21:53  Grandyang  阅读(24796)  评论(14编辑  收藏  举报
Fork me on GitHub