在windows远程提交任务给Hadoop集群(Hadoop 2.6)

我使用3台Centos虚拟机搭建了一个Hadoop2.6的集群。希望在windows7上面使用IDEA开发mapreduce程序,然后提交的远程的Hadoop集群上执行。经过不懈的google终于搞定

 
 
开始我使用hadoop的eclipse插件来执行job,竟然成功了,后来发现mapreduce是在本地执行的,根本没有提交到集群上。我把hadoop的4个配置文件加上后就开始出现了问题。
 

1:org.apache.hadoop.util.Shell$ExitCodeException: /bin/bash: line 0: fg: no job control 

网上说要修改源码,在Hadoop2.6已经合并了那个补丁。这个错误怎么解决的也忘记了
 

2:Stack trace: ExitCodeException exitCode=1:

 

3:Error: Could not find or load main class org.apache.hadoop.mapreduce.v2.app.MRAppMaster

 

4:Error: java.lang.RuntimeExceptionjava.lang.ClassNotFoundException: Class WordCount$Map not found

 

 
按照我的步骤走,这些问题都能解决,我使用的IDE是IDEA
1:复制Hadoop的4个配置文件放到src目录下面:core-site.xml,hdfs-site.xml,log4j.properties,mapred-site.xml,yarn-site.xml
 
2:配置mapred-site.xml
<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
    <property>
        <name>mapred.remote.os</name>
        <value>Linux</value>
    </property>
    <property>
        <name>mapreduce.app-submission.cross-platform</name>
        <value>true</value>
    </property>
    <property>
    <name>mapreduce.application.classpath</name>
    <value>
        /opt/hadoop-2.6.0/etc/hadoop,
        /opt/hadoop-2.6.0/share/hadoop/common/*,
        /opt/hadoop-2.6.0/share/hadoop/common/lib/*,
        /opt/hadoop-2.6.0/share/hadoop/hdfs/*,
        /opt/hadoop-2.6.0/share/hadoop/hdfs/lib/*,
        /opt/hadoop-2.6.0/share/hadoop/mapreduce/*,
        /opt/hadoop-2.6.0/share/hadoop/mapreduce/lib/*,
        /opt/hadoop-2.6.0/share/hadoop/yarn/*,
        /opt/hadoop-2.6.0/share/hadoop/yarn/lib/*
    </value>
</property>    
    <property>
        <name>mapreduce.jobhistory.address</name>
        <value>master:10020</value>
    </property>
       <property>
                <name>mapreduce.jobhistory.webapp.address</name>
                <value>master:19888</value>
        </property>
</configuration>

 

注意mapreduce.application.classpath一定是绝对路径,不要搞什么$HADOOP_HOME,我这里反正是报错的
 
3:修改yarn-site.xml
  1. <configuration>
    <!-- Site specific YARN configuration properties -->
      <property>
            <name>yarn.nodemanager.aux-services</name>
            <value>mapreduce_shuffle</value>
        </property>
        <property>
            <name>yarn.resourcemanager.address</name>
            <value>master:8032</value>
        </property>
    <property>
        <name>yarn.application.classpath</name>
        <value>
            /opt/hadoop-2.6.0/etc/hadoop,
            /opt/hadoop-2.6.0/share/hadoop/common/*,
            /opt/hadoop-2.6.0/share/hadoop/common/lib/*,
            /opt/hadoop-2.6.0/share/hadoop/hdfs/*,
            /opt/hadoop-2.6.0/share/hadoop/hdfs/lib/*,
            /opt/hadoop-2.6.0/share/hadoop/mapreduce/*,
            /opt/hadoop-2.6.0/share/hadoop/mapreduce/lib/*,
            /opt/hadoop-2.6.0/share/hadoop/yarn/*,
            /opt/hadoop-2.6.0/share/hadoop/yarn/lib/*
        </value>
      </property>
    </configuration>

     


注意yarn.application.classpath一定是绝对路径,不要搞什么$HADOOP_HOME
 
4:看下我的代码
  1. package com.gaoxing.hadoop;
    
    import java.io.IOException;
    import java.security.PrivilegedExceptionAction;
    import java.util.StringTokenizer;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.security.UserGroupInformation;
    import org.apache.hadoop.util.GenericOptionsParser;
    
    public class WordCount {
        //继承mapper接口,设置map的输入类型为<Object,Text>
        //输出类型为<Text,IntWritable>
        public static class Map extends Mapper<Object,Text,Text,IntWritable>{
            //one表示单词出现一次
            private static IntWritable one = new IntWritable(1);
            //word存储切下的单词
            private Text word = new Text();
            public void map(Object key,Text value,Context context) throws IOException,InterruptedException{
                //对输入的行切词
                StringTokenizer st = new StringTokenizer(value.toString());
                while(st.hasMoreTokens()){
                    word.set(st.nextToken());//切下的单词存入word
                    context.write(word, one);
                }
            }
        }
        //继承reducer接口,设置reduce的输入类型<Text,IntWritable>
        //输出类型为<Text,IntWritable>
        public static class Reduce extends Reducer<Text,IntWritable,Text,IntWritable>{
            //result记录单词的频数
            private static IntWritable result = new IntWritable();
            public void reduce(Text key,Iterable<IntWritable> values,Context context) throws IOException,InterruptedException{
                int sum = 0;
                //对获取的<key,value-list>计算value的和
                for(IntWritable val:values){
                    sum += val.get();
                }
                //将频数设置到result
                result.set(sum);
                //收集结果
                context.write(key, result);
            }
        }
        /**
         * @param args
         */
        public static void main(String[] args) throws Exception{
            Configuration conf = new Configuration();
           // conf.set("mapred.remote.os","Linux");
           // conf.set("yarn.resourcemanager.address","master:8032");
           // conf.set("mapreduce.framework.name","yarn");
            conf.set("mapred.jar","D:\\IdeaProjects\\hadooplearn\\out\\artifacts\\hadoo.jar");
            //conf.set("mapreduce.app-submission.cross-platform","true");
            Job job = Job.getInstance(conf);
            job.setJobName("test");
            //配置作业各个类
            job.setJarByClass(WordCount.class);
            job.setMapperClass(Map.class);
            job.setCombinerClass(Reduce.class);
            job.setReducerClass(Reduce.class);
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(IntWritable.class);
            FileInputFormat.addInputPath(job, new Path("hdfs://master:9000/tmp/hbase-env.sh"));
            FileOutputFormat.setOutputPath(job, new Path("hdfs://master:9000/tmp/out11"));
            System.exit(job.waitForCompletion(true) ? 0 : 1);
        }
    
    }

     


conf.set("mapred.jar","D:\\IdeaProjects\\hadooplearn\\out\\artifacts\\hadoo.jar");这是最重要的一句,不然会报上面第4个问题
 
IDEA中有个功能就是编译的时候打包:

 
下班了。
 
 
 
 





posted @ 2015-04-29 20:04  高兴的博客  阅读(12006)  评论(0编辑  收藏  举报