golang http/transport 代码分析

请结合源码阅读,本文只是总结一下,源码里有详细的注释。基于:go1.12.4

http.Client 表示一个http client端,用来处理HTTP相关的工作,例如cookies, redirect, timeout等工作,其内部包含一个Transport,为RountTripper interface类型。

type Client struct {
	// Transport specifies the mechanism by which individual
	// HTTP requests are made.
	// If nil, DefaultTransport is used.
	Transport RoundTripper
    ...
}

RountTripper定义了执行一次http请求时,如何根据reueqest返回response,它必须是支持并发的一个结构体,允许多个groutine同时调用:

type RoundTripper interface {
	RoundTrip(*Request) (*Response, error)
}

如果不给http.Client显式指定RoundTripper则会创建一个默认的DefaultTransport。Transport是用来保存多个请求过程中的一些状态,用来缓存tcp连接,客户可以重用这些连接,防止每次新建,transport需要同时支持http, https, 并且需要http/1.1, http/2。DefaultTransport默认就支持http/2.0,如果需要显式指定则调用ConfigureTransport

transport必须实现interface中的roundTrip方法:


// roundTrip implements a RoundTripper over HTTP.
func (t *Transport) roundTrip(req *Request) (*Response, error) {
    ...
	for {
		select {
		case <-ctx.Done():
			req.closeBody()
			return nil, ctx.Err()
		default:
		}

		// treq gets modified by roundTrip, so we need to recreate for each retry.
		treq := &transportRequest{Request: req, trace: trace}
		cm, err := t.connectMethodForRequest(treq)
		if err != nil {
			req.closeBody()
			return nil, err
		}

        // 获取一个连接
		// Get the cached or newly-created connection to either the
		// host (for http or https), the http proxy, or the http proxy
		// pre-CONNECTed to https server. In any case, we'll be ready
		// to send it requests.
		pconn, err := t.getConn(treq, cm)
		if err != nil {
			t.setReqCanceler(req, nil)
			req.closeBody()
			return nil, err
		}

		var resp *Response
		if pconn.alt != nil {
			// HTTP/2 path.
			t.decHostConnCount(cm.key()) // don't count cached http2 conns toward conns per host
			t.setReqCanceler(req, nil)   // not cancelable with CancelRequest
			resp, err = pconn.alt.RoundTrip(req)
		} else {
            // 开始调用该pconn的rountTrip方法取得response
			resp, err = pconn.roundTrip(treq)
		}
		if err == nil {
			return resp, nil
		}
		if !pconn.shouldRetryRequest(req, err) {
			// Issue 16465: return underlying net.Conn.Read error from peek,
			// as we've historically done.
			if e, ok := err.(transportReadFromServerError); ok {
				err = e.err
			}
			return nil, err
		}
		testHookRoundTripRetried()

		// Rewind the body if we're able to.
		if req.GetBody != nil {
			newReq := *req
			var err error
			newReq.Body, err = req.GetBody()
			if err != nil {
				return nil, err
			}
			req = &newReq
		}
	}
}

roundTrip其实就是通过getConn用于获取一个连接persisConn并调用其roundTrip方法返回repsonse。其中getConn的实现如下:

// getConn dials and creates a new persistConn to the target as
// specified in the connectMethod. This includes doing a proxy CONNECT
// and/or setting up TLS.  If this doesn't return an error, the persistConn
// is ready to write requests to.
func (t *Transport) getConn(treq *transportRequest, cm connectMethod) (*persistConn, error) {
	req := treq.Request
	trace := treq.trace
	ctx := req.Context()
	if trace != nil && trace.GetConn != nil {
		trace.GetConn(cm.addr())
    }
    // 首先从idleConn空闲连接池中尝试获取闲置的连接
	if pc, idleSince := t.getIdleConn(cm); pc != nil {
		if trace != nil && trace.GotConn != nil {
			trace.GotConn(pc.gotIdleConnTrace(idleSince))
		}
		// set request canceler to some non-nil function so we
		// can detect whether it was cleared between now and when
		// we enter roundTrip
		t.setReqCanceler(req, func(error) {})
		return pc, nil
	}

	type dialRes struct {
		pc  *persistConn
		err error
    }
	dialc := make(chan dialRes)     // 连接创建完成之后会从该管道异步通知
	cmKey := cm.key()               // 标识一个连接的key

	// Copy these hooks so we don't race on the postPendingDial in
	// the goroutine we launch. Issue 11136.
	testHookPrePendingDial := testHookPrePendingDial
	testHookPostPendingDial := testHookPostPendingDial

	handlePendingDial := func() {
		testHookPrePendingDial()
		go func() {
			if v := <-dialc; v.err == nil {
				t.putOrCloseIdleConn(v.pc)
			} else {
				t.decHostConnCount(cmKey)
			}
			testHookPostPendingDial()
		}()
	}

	cancelc := make(chan error, 1)
	t.setReqCanceler(req, func(err error) { cancelc <- err })

    // 一边增加记录的连接数,一边尝试获取连接,一边监听取消事件
	if t.MaxConnsPerHost > 0 {
		select {
		case <-t.incHostConnCount(cmKey):
			// count below conn per host limit; proceed
		case pc := <-t.getIdleConnCh(cm):
			if trace != nil && trace.GotConn != nil {
				trace.GotConn(httptrace.GotConnInfo{Conn: pc.conn, Reused: pc.isReused()})
			}
			return pc, nil
		case <-req.Cancel:
			return nil, errRequestCanceledConn
		case <-req.Context().Done():
			return nil, req.Context().Err()
		case err := <-cancelc:
			if err == errRequestCanceled {
				err = errRequestCanceledConn
			}
			return nil, err
		}
	}

    // 异步发起连接操作
	go func() {
		pc, err := t.dialConn(ctx, cm)
		dialc <- dialRes{pc, err}
	}()

    // 监听多个事件来源
    // 1. 新创建成功
    // 2. 其它连接结束,闲置连接池中有连接可以复用
    // 3. 连接被取消
    // 第一种情况和第二种情况谁先成功就直接返回
    // 除了新建连接成功,其它所有情况都需要处理调用`handlePendingDial`,该函数决定新建连接返回后该如何处理
	idleConnCh := t.getIdleConnCh(cm)
	select {
	case v := <-dialc:  // 如果新建连接结束后会从该channel发送过来
		// Our dial finished.
		if v.pc != nil {
			if trace != nil && trace.GotConn != nil && v.pc.alt == nil {
				trace.GotConn(httptrace.GotConnInfo{Conn: v.pc.conn})
			}
			return v.pc, nil
		}
		// Our dial failed. See why to return a nicer error
		// value.
		t.decHostConnCount(cmKey)
		select {
		case <-req.Cancel:
			// It was an error due to cancelation, so prioritize that
			// error value. (Issue 16049)
			return nil, errRequestCanceledConn
		case <-req.Context().Done():
			return nil, req.Context().Err()
		case err := <-cancelc:
			if err == errRequestCanceled {
				err = errRequestCanceledConn
			}
			return nil, err
		default:
			// It wasn't an error due to cancelation, so
			// return the original error message:
			return nil, v.err
		}
	case pc := <-idleConnCh:        // 如果从空闲连接池中有了可用的连接,直接返回
		// Another request finished first and its net.Conn
		// became available before our dial. Or somebody
		// else's dial that they didn't use.
		// But our dial is still going, so give it away
		// when it finishes:
		handlePendingDial()
		if trace != nil && trace.GotConn != nil {
			trace.GotConn(httptrace.GotConnInfo{Conn: pc.conn, Reused: pc.isReused()})
		}
		return pc, nil
	case <-req.Cancel:
		handlePendingDial()
		return nil, errRequestCanceledConn
	case <-req.Context().Done():
		handlePendingDial()
		return nil, req.Context().Err()
	case err := <-cancelc:
		handlePendingDial()
		if err == errRequestCanceled {
			err = errRequestCanceledConn
		}
		return nil, err
	}
}

getConn首先从空闲连接池中获取连接,如果没有,则新建连接。在新建过程中,如果连接池中有空闲连接则也复用空闲连接。
继续看一下dialConn是如何建立连接的:

func (t *Transport) dialConn(ctx context.Context, cm connectMethod) (*persistConn, error) {
    // 注意这里初始化的各种channle
	pconn := &persistConn{
		t:             t,
		cacheKey:      cm.key(),
		reqch:         make(chan requestAndChan, 1),    // 用于给readLoop发送request
		writech:       make(chan writeRequest, 1),      // 用于给writeLoop发送request
		closech:       make(chan struct{}),             // 当连接关闭是用于传递信息
		writeErrCh:    make(chan error, 1),             // 由writeLoop返回给roundTrip错误信息
		writeLoopDone: make(chan struct{}),             // 当writeLoop结束的时候会关闭该channel
	}
	trace := httptrace.ContextClientTrace(ctx)
	wrapErr := func(err error) error {
		if cm.proxyURL != nil {
			// Return a typed error, per Issue 16997
			return &net.OpError{Op: "proxyconnect", Net: "tcp", Err: err}
		}
		return err
	}

    conn, err := t.dial(ctx, "tcp", cm.addr())
    if err != nil {
        return nil, wrapErr(err)
    }
    pconn.conn = conn


    // 包装一个请求成另一个结构体,方便后续处理
	if t.MaxConnsPerHost > 0 {
		pconn.conn = &connCloseListener{Conn: pconn.conn, t: t, cmKey: pconn.cacheKey}
    }
    // 包装读写conn并开启读取和写入groutine
	pconn.br = bufio.NewReader(pconn)   
	pconn.bw = bufio.NewWriter(persistConnWriter{pconn})
	go pconn.readLoop()
	go pconn.writeLoop()
	return pconn, nil
}

可以看到首先调用dial函数,获取一个conn对象,然后封装为pconn的, 启动readLoop和wirteLoop后将该pconn返回。
以readLoop为例,看看是如何从一个pc中读取response的:

func (pc *persistConn) readLoop() {
    // 默认是失败,如果失败则进行处理,移除该连接,使用defer语句表示在程序退出的时候执行,也就是说该groutine在正常情况下不会退出,是个死循环,通过channel与其它groutine通信,处理请求
	closeErr := errReadLoopExiting // default value, if not changed below
	defer func() {
		pc.close(closeErr)
		pc.t.removeIdleConn(pc)
	}()

    // 尝试将该连接重新返回闲置连接池
	tryPutIdleConn := func(trace *httptrace.ClientTrace) bool {
		if err := pc.t.tryPutIdleConn(pc); err != nil {
			closeErr = err
			if trace != nil && trace.PutIdleConn != nil && err != errKeepAlivesDisabled {
				trace.PutIdleConn(err)
			}
			return false
		}
		if trace != nil && trace.PutIdleConn != nil {
			trace.PutIdleConn(nil)
		}
		return true
	}

    // 用来保证先后次序,先归还连接再读取response.Body
	// eofc is used to block caller goroutines reading from Response.Body
	// at EOF until this goroutines has (potentially) added the connection
	// back to the idle pool.
	eofc := make(chan struct{})
	defer close(eofc) // unblock reader on errors

	// Read this once, before loop starts. (to avoid races in tests)
	testHookMu.Lock()
	testHookReadLoopBeforeNextRead := testHookReadLoopBeforeNextRead
	testHookMu.Unlock()

	alive := true
	for alive {
		pc.readLimit = pc.maxHeaderResponseSize()
		_, err := pc.br.Peek(1)

		pc.mu.Lock()
		if pc.numExpectedResponses == 0 {
			pc.readLoopPeekFailLocked(err)
			pc.mu.Unlock()
			return
		}
		pc.mu.Unlock()

        // 获取一个新连接来处理
		rc := <-pc.reqch
		trace := httptrace.ContextClientTrace(rc.req.Context())

		var resp *Response
		if err == nil {
            // 读取返回结果
			resp, err = pc.readResponse(rc, trace)
		} else {
			err = transportReadFromServerError{err}
			closeErr = err
		}

		if err != nil {
			if pc.readLimit <= 0 {
				err = fmt.Errorf("net/http: server response headers exceeded %d bytes; aborted", pc.maxHeaderResponseSize())
			}

			select {
			case rc.ch <- responseAndError{err: err}:
			case <-rc.callerGone:
				return
			}
			return
		}
		pc.readLimit = maxInt64 // effictively no limit for response bodies

		pc.mu.Lock()
		pc.numExpectedResponses--
		pc.mu.Unlock()

		bodyWritable := resp.bodyIsWritable()
		hasBody := rc.req.Method != "HEAD" && resp.ContentLength != 0

		if resp.Close || rc.req.Close || resp.StatusCode <= 199 || bodyWritable {
			// Don't do keep-alive on error if either party requested a close
			// or we get an unexpected informational (1xx) response.
			// StatusCode 100 is already handled above.
			alive = false
		}

		if !hasBody || bodyWritable {
			pc.t.setReqCanceler(rc.req, nil)

			// Put the idle conn back into the pool before we send the response
			// so if they process it quickly and make another request, they'll
			// get this same conn. But we use the unbuffered channel 'rc'
			// to guarantee that persistConn.roundTrip got out of its select
			// potentially waiting for this persistConn to close.
			// but after
			alive = alive &&
				!pc.sawEOF &&
				pc.wroteRequest() &&
				tryPutIdleConn(trace)

			if bodyWritable {
				closeErr = errCallerOwnsConn
			}

			select {
			case rc.ch <- responseAndError{res: resp}:
			case <-rc.callerGone:
				return
			}

			// Now that they've read from the unbuffered channel, they're safely
			// out of the select that also waits on this goroutine to die, so
			// we're allowed to exit now if needed (if alive is false)
			testHookReadLoopBeforeNextRead()
			continue
		}

        // bodyEOFSignal实现了io.ReadCloser interface, 保证读取的时候,该response已经收到了eof
		waitForBodyRead := make(chan bool, 2)
		body := &bodyEOFSignal{
			body: resp.Body,
			earlyCloseFn: func() error {
				waitForBodyRead <- false
				<-eofc // will be closed by deferred call at the end of the function
				return nil

			},
			fn: func(err error) error {
				isEOF := err == io.EOF
				waitForBodyRead <- isEOF
				if isEOF {
					<-eofc // see comment above eofc declaration
				} else if err != nil {
					if cerr := pc.canceled(); cerr != nil {
						return cerr
					}
				}
				return err
			},
		}

		resp.Body = body
		if rc.addedGzip && strings.EqualFold(resp.Header.Get("Content-Encoding"), "gzip") {
			resp.Body = &gzipReader{body: body}
			resp.Header.Del("Content-Encoding")
			resp.Header.Del("Content-Length")
			resp.ContentLength = -1
			resp.Uncompressed = true
		}

		select {
        // 将分装好的repsponse发送回去
		case rc.ch <- responseAndError{res: resp}:
		case <-rc.callerGone:
			return
		}

		// Before looping back to the top of this function and peeking on
		// the bufio.Reader, wait for the caller goroutine to finish
		// reading the response body. (or for cancelation or death)
		select {
		case bodyEOF := <-waitForBodyRead:
			pc.t.setReqCanceler(rc.req, nil) // before pc might return to idle pool
			alive = alive &&
				bodyEOF &&
				!pc.sawEOF &&
				pc.wroteRequest() &&
				tryPutIdleConn(trace)
			if bodyEOF {
				eofc <- struct{}{}      //前面所有检查完毕,通知对端开始读取
			}
		case <-rc.req.Cancel:
			alive = false
			pc.t.CancelRequest(rc.req)
		case <-rc.req.Context().Done():
			alive = false
			pc.t.cancelRequest(rc.req, rc.req.Context().Err())
		case <-pc.closech:
			alive = false
		}

		testHookReadLoopBeforeNextRead()
	}
}

上面readLoop中从一个channel中读取出来需要处理的request, 然后读取readResponse并通过管道返回回去。那接受到的request是从哪个地方发送过来的呐?
回到最开始的Transport.roundTrip函数里,它先调用getConn返回一个pconn后然后调用pconn.roundTrip方法,就是在这里面发送的,我们看看:

func (pc *persistConn) roundTrip(req *transportRequest) (resp *Response, err error) {
	testHookEnterRoundTrip()
	if !pc.t.replaceReqCanceler(req.Request, pc.cancelRequest) {
		pc.t.putOrCloseIdleConn(pc)
		return nil, errRequestCanceled
	}
	pc.mu.Lock()
	pc.numExpectedResponses++
	headerFn := pc.mutateHeaderFunc
	pc.mu.Unlock()

	if headerFn != nil {
		headerFn(req.extraHeaders())
	}

    ...

	var continueCh chan struct{}
	if req.ProtoAtLeast(1, 1) && req.Body != nil && req.expectsContinue() {
		continueCh = make(chan struct{}, 1)
	}

	if pc.t.DisableKeepAlives && !req.wantsClose() {
		req.extraHeaders().Set("Connection", "close")
	}

	gone := make(chan struct{})
	defer close(gone)

	defer func() {
		if err != nil {
			pc.t.setReqCanceler(req.Request, nil)
		}
	}()

	const debugRoundTrip = false

    // 通过writech发送该请求
	// Write the request concurrently with waiting for a response,
	// in case the server decides to reply before reading our full
	// request body.
	startBytesWritten := pc.nwrite
	writeErrCh := make(chan error, 1)
	pc.writech <- writeRequest{req, writeErrCh, continueCh}

    resc := make(chan responseAndError)
    // 发送当前正在处理的请求给readLoop,readLoop中从channle中读取出该请求,进行readResponse
    // 其中的requestAndChan.ch是response返回的channel
	pc.reqch <- requestAndChan{
		req:        req.Request,
		ch:         resc,
		addedGzip:  requestedGzip,
		continueCh: continueCh,
		callerGone: gone,
	}

	var respHeaderTimer <-chan time.Time
	cancelChan := req.Request.Cancel
	ctxDoneChan := req.Context().Done()
	for {
		testHookWaitResLoop()
		select {
		case err := <-writeErrCh:   // writeLoop出现错误
			if debugRoundTrip {
				req.logf("writeErrCh resv: %T/%#v", err, err)
			}
			if err != nil {
				pc.close(fmt.Errorf("write error: %v", err))
				return nil, pc.mapRoundTripError(req, startBytesWritten, err)
			}
			if d := pc.t.ResponseHeaderTimeout; d > 0 {
				if debugRoundTrip {
					req.logf("starting timer for %v", d)
				}
				timer := time.NewTimer(d)
				defer timer.Stop() // prevent leaks
				respHeaderTimer = timer.C
			}
		case <-pc.closech:
			if debugRoundTrip {
				req.logf("closech recv: %T %#v", pc.closed, pc.closed)
			}
			return nil, pc.mapRoundTripError(req, startBytesWritten, pc.closed)
		case <-respHeaderTimer:
			if debugRoundTrip {
				req.logf("timeout waiting for response headers.")
			}
			pc.close(errTimeout)
			return nil, errTimeout
		case re := <-resc:          // readLoop会将读取的结果通过resc channel发送回来
			if (re.res == nil) == (re.err == nil) {
				panic(fmt.Sprintf("internal error: exactly one of res or err should be set; nil=%v", re.res == nil))
			}
			if debugRoundTrip {
				req.logf("resc recv: %p, %T/%#v", re.res, re.err, re.err)
			}
			if re.err != nil {
				return nil, pc.mapRoundTripError(req, startBytesWritten, re.err)
			}
			return re.res, nil
		case <-cancelChan:
			pc.t.CancelRequest(req.Request)
			cancelChan = nil
		case <-ctxDoneChan:
			pc.t.cancelRequest(req.Request, req.Context().Err())
			cancelChan = nil
			ctxDoneChan = nil
		}
	}
}

该函数中会将request进行封装,然后分别通过channel发送给readLoop和writeLoop,并监听各个channel的事件,分别进行不同的处理。

整体流程走完之后,我们回顾一下两个比较重要的结构体:persistConnTransport的成员

// persistConn wraps a connection, usually a persistent one
// (but may be used for non-keep-alive requests as well)
type persistConn struct {
	// alt optionally specifies the TLS NextProto RoundTripper.
	// This is used for HTTP/2 today and future protocols later.
	// If it's non-nil, the rest of the fields are unused.
	alt RoundTripper

	t         *Transport
	cacheKey  connectMethodKey        // 当前连接对应的key, 也是idleConns map中的key
	conn      net.Conn                  // 被封装的conn对象
	tlsState  *tls.ConnectionState  
	br        *bufio.Reader       // from conn      // bufio.Reader 对象,封装conn
	bw        *bufio.Writer       // to conn        // bufio.Writer 对象,封装conn
	nwrite    int64               // bytes written  // 记录写入的长度
	reqch     chan requestAndChan // written by roundTrip; read by readLoop // rountTrip在创建一个请求的时候会讲请求通过该chenel发送给readLoop,  readLoop后面解释
	writech   chan writeRequest   // written by roundTrip; read by writeLoop    // writeTrop 从中读取写入请求并执行写入
	closech   chan struct{}       // closed when conn closed                    // 连接关闭的时候从该channle通信
	isProxy   bool
	sawEOF    bool  // whether we've seen EOF from conn; owned by readLoop
	readLimit int64 // bytes allowed to be read; owned by readLoop
	// writeErrCh passes the request write error (usually nil)
	// from the writeLoop goroutine to the readLoop which passes
	// it off to the res.Body reader, which then uses it to decide
	// whether or not a connection can be reused. Issue 7569.
	writeErrCh chan error                                       // 

	writeLoopDone chan struct{} // closed when write loop ends

	// Both guarded by Transport.idleMu:
	idleAt    time.Time   // time it last become idle
	idleTimer *time.Timer // holding an AfterFunc to close it

	mu                   sync.Mutex // guards following fields
	numExpectedResponses int            //表示当期期望的返回response数目
	closed               error // set non-nil when conn is closed, before closech is closed
	canceledErr          error // set non-nil if conn is canceled
	broken               bool  // an error has happened on this connection; marked broken so it's not reused.
	reused               bool  // whether conn has had successful request/response and is being reused.
	// mutateHeaderFunc is an optional func to modify extra
	// headers on each outbound request before it's written. (the
	// original Request given to RoundTrip is not modified)
	mutateHeaderFunc func(Header)
}
type Transport struct {
	idleMu     sync.Mutex       // 互斥锁,用于保护下面空闲连接池
	wantIdle   bool                                // user has requested to close all idle conns// 标识是否idle
	idleConn   map[connectMethodKey][]*persistConn // most recently used at end                 // 空闲连接池
	idleConnCh map[connectMethodKey]chan *persistConn    // 用于在groutine中间传递空闲的连接,一般用于当连接池中没有连接,但是还有请求需要处理,当连接池中出现空闲连接时通过该channel通知
	idleLRU    connLRU

	reqMu       sync.Mutex
	reqCanceler map[*Request]func(error)

	altMu    sync.Mutex   // guards changing altProto only
	altProto atomic.Value // of nil or map[string]RoundTripper, key is URI scheme

	connCountMu          sync.Mutex
	connPerHostCount     map[connectMethodKey]int
	connPerHostAvailable map[connectMethodKey]chan struct{}

	// Proxy specifies a function to return a proxy for a given
	// Request. If the function returns a non-nil error, the
	// request is aborted with the provided error.
	//
	// The proxy type is determined by the URL scheme. "http",
	// "https", and "socks5" are supported. If the scheme is empty,
	// "http" is assumed.
	//
	// If Proxy is nil or returns a nil *URL, no proxy is used.
	Proxy func(*Request) (*url.URL, error)

	// DialContext specifies the dial function for creating unencrypted TCP connections.
	// If DialContext is nil (and the deprecated Dial below is also nil),
	// then the transport dials using package net.
	//
	// DialContext runs concurrently with calls to RoundTrip.
	// A RoundTrip call that initiates a dial may end up using
	// a connection dialed previously when the earlier connection
	// becomes idle before the later DialContext completes.
	DialContext func(ctx context.Context, network, addr string) (net.Conn, error)// 用于新建连接时使用

	// Dial specifies the dial function for creating unencrypted TCP connections.
	//
	// Dial runs concurrently with calls to RoundTrip.
	// A RoundTrip call that initiates a dial may end up using
	// a connection dialed previously when the earlier connection
	// becomes idle before the later Dial completes.
	//
	// Deprecated: Use DialContext instead, which allows the transport
	// to cancel dials as soon as they are no longer needed.
	// If both are set, DialContext takes priority.
	Dial func(network, addr string) (net.Conn, error)

	// DialTLS specifies an optional dial function for creating
	// TLS connections for non-proxied HTTPS requests.
	//
	// If DialTLS is nil, Dial and TLSClientConfig are used.
	//
	// If DialTLS is set, the Dial hook is not used for HTTPS
	// requests and the TLSClientConfig and TLSHandshakeTimeout
	// are ignored. The returned net.Conn is assumed to already be
	// past the TLS handshake.
	DialTLS func(network, addr string) (net.Conn, error)

	// TLSClientConfig specifies the TLS configuration to use with
	// tls.Client.
	// If nil, the default configuration is used.
	// If non-nil, HTTP/2 support may not be enabled by default.
	TLSClientConfig *tls.Config

	// TLSHandshakeTimeout specifies the maximum amount of time waiting to
	// wait for a TLS handshake. Zero means no timeout.
	TLSHandshakeTimeout time.Duration

	// DisableKeepAlives, if true, disables HTTP keep-alives and
	// will only use the connection to the server for a single
	// HTTP request.
	//
	// This is unrelated to the similarly named TCP keep-alives.
	DisableKeepAlives bool

	// DisableCompression, if true, prevents the Transport from
	// requesting compression with an "Accept-Encoding: gzip"
	// request header when the Request contains no existing
	// Accept-Encoding value. If the Transport requests gzip on
	// its own and gets a gzipped response, it's transparently
	// decoded in the Response.Body. However, if the user
	// explicitly requested gzip it is not automatically
	// uncompressed.
	DisableCompression bool

	// MaxIdleConns controls the maximum number of idle (keep-alive)
	// connections across all hosts. Zero means no limit.
	MaxIdleConns int

	// MaxIdleConnsPerHost, if non-zero, controls the maximum idle
	// (keep-alive) connections to keep per-host. If zero,
	// DefaultMaxIdleConnsPerHost is used.
	MaxIdleConnsPerHost int

	// MaxConnsPerHost optionally limits the total number of
	// connections per host, including connections in the dialing,
	// active, and idle states. On limit violation, dials will block.
	//
	// Zero means no limit.
	//
	// For HTTP/2, this currently only controls the number of new
	// connections being created at a time, instead of the total
	// number. In practice, hosts using HTTP/2 only have about one
	// idle connection, though.
	MaxConnsPerHost int

	// IdleConnTimeout is the maximum amount of time an idle
	// (keep-alive) connection will remain idle before closing
	// itself.
	// Zero means no limit.
	IdleConnTimeout time.Duration

	// ResponseHeaderTimeout, if non-zero, specifies the amount of
	// time to wait for a server's response headers after fully
	// writing the request (including its body, if any). This
	// time does not include the time to read the response body.
	ResponseHeaderTimeout time.Duration

	// ExpectContinueTimeout, if non-zero, specifies the amount of
	// time to wait for a server's first response headers after fully
	// writing the request headers if the request has an
	// "Expect: 100-continue" header. Zero means no timeout and
	// causes the body to be sent immediately, without
	// waiting for the server to approve.
	// This time does not include the time to send the request header.
	ExpectContinueTimeout time.Duration

	// TLSNextProto specifies how the Transport switches to an
	// alternate protocol (such as HTTP/2) after a TLS NPN/ALPN
	// protocol negotiation. If Transport dials an TLS connection
	// with a non-empty protocol name and TLSNextProto contains a
	// map entry for that key (such as "h2"), then the func is
	// called with the request's authority (such as "example.com"
	// or "example.com:1234") and the TLS connection. The function
	// must return a RoundTripper that then handles the request.
	// If TLSNextProto is not nil, HTTP/2 support is not enabled
	// automatically.
	TLSNextProto map[string]func(authority string, c *tls.Conn) RoundTripper

	// ProxyConnectHeader optionally specifies headers to send to
	// proxies during CONNECT requests.
	ProxyConnectHeader Header

	// MaxResponseHeaderBytes specifies a limit on how many
	// response bytes are allowed in the server's response
	// header.
	//
	// Zero means to use a default limit.
	MaxResponseHeaderBytes int64

	// nextProtoOnce guards initialization of TLSNextProto and
	// h2transport (via onceSetNextProtoDefaults)
	nextProtoOnce sync.Once
	h2transport   h2Transport // non-nil if http2 wired up
}

如此便是整个流程,其实还是很清晰的,最后总结一下:
tranport用来建立一个连接,其中维护了一个空闲连接池idleConn map[connectMethodKey][]*persistConn,其中的每个成员都是一个persistConn对象,persistConn是个具体的连接实例,包含了连接的上下文,会启动两个groutine分别执行readLoopwriteLoop, 每当transport调用roundTrip的时候,就会从连接池中选择一个空闲的persistConn,然后调用其roundTrip方法,将读写请求通过channel分别发送到readLoopwriteLoop中,然后会进行select各个channel的信息,包括连接关闭,请求超时,writeLoop出错, readLoop返回读取结果等。在writeLoop中发送请求,在readLoop中获取response并通过channe返回给roundTrip函数中,并再次将自己加入到idleConn中,等待下次请求到来。

推荐阅读

Go HTTP Client 持久连接

posted @ 2019-05-21 09:41  gaorong404  阅读(9030)  评论(1编辑  收藏  举报