Apache Spark 1.3.0引入了Direct API,利用Kafka的低层次API从Kafka集群中读取数据,并且在Spark Streaming系统里面维护偏移量相关的信息,并且通过这种方式去实现零数据丢失(zero data loss)相比使用基于Receiver的方法要高效。但是因为是Spark Streaming系统自己维护Kafka的读偏移量,而Spark Streaming系统并没有将这个消费的偏移量发送到Zookeeper中,这将导致那些基于偏移量的Kafka集群监控软件(比如:Apache Kafka监控之Kafka Web Console、Apache Kafka监控之KafkaOffsetMonitor等)失效。本文就是基于为了解决这个问题,使得我们编写的Spark Streaming程序能够在每次接收到数据之后自动地更新Zookeeper中Kafka的偏移量。
Apache Spark 1.3.0引入了Direct API,利用Kafka的低层次API从Kafka集群中读取数据,并且在Spark Streaming系统里面维护偏移量相关的信息,并且通过这种方式去实现零数据丢失(zero data loss)相比使用基于Receiver的方法要高效。但是因为是Spark Streaming系统自己维护Kafka的读偏移量,而Spark Streaming系统并没有将这个消费的偏移量发送到Zookeeper中,这将导致那些基于偏移量的Kafka集群监控软件(比如:Apache Kafka监控之Kafka Web Console、Apache Kafka监控之KafkaOffsetMonitor等)失效。本文就是基于为了解决这个问题,使得我们编写的Spark Streaming程序能够在每次接收到数据之后自动地更新Zookeeper中Kafka的偏移量。
我们从Spark的官方文档可以知道,维护Spark内部维护Kafka便宜了信息是存储在HasOffsetRanges
类的offsetRanges
中,我们可以在Spark Streaming程序里面获取这些信息:
1 |
val offsetsList = rdd.asInstanceOf[HasOffsetRanges].offsetRanges |
这样我们就可以获取所以分区消费信息,只需要遍历offsetsList,然后将这些信息发送到Zookeeper即可更新Kafka消费的偏移量。完整的代码片段如下:
01 |
val messages = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topicsSet) |
02 |
messages.foreachRDD(rdd = > { |
03 |
val offsetsList = rdd.asInstanceOf[HasOffsetRanges].offsetRanges |
04 |
val kc = new KafkaCluster(kafkaParams) |
05 |
for (offsets < - offsetsList) { |
06 |
val topicAndPartition = TopicAndPartition( "iteblog" , offsets.partition) |
07 |
val o = kc.setConsumerOffsets(args( 0 ), Map((topicAndPartition, offsets.untilOffset))) |
09 |
println(s "Error updating the offset to Kafka cluster: ${o.left.get}" ) |
KafkaCluster
类用于建立和Kafka集群的链接相关的操作工具类,我们可以对Kafka中Topic的每个分区设置其相应的偏移量Map((topicAndPartition, offsets.untilOffset))
,然后调用KafkaCluster
类的setConsumerOffsets
方法去更新Zookeeper里面的信息,这样我们就可以更新Kafka的偏移量,最后我们就可以通过KafkaOffsetMonitor之类软件去监控Kafka中相应Topic的消费信息,下图是KafkaOffsetMonitor的监控情况:
从图中我们可以看到KafkaOffsetMonitor监控软件已经可以监控到Kafka相关分区的消费情况,这对监控我们整个Spark Streaming程序来非常重要,因为我们可以任意时刻了解Spark读取速度。另外,KafkaCluster工具类的完整代码如下:
01 |
package org.apache.spark.streaming.kafka |
03 |
import kafka.api.OffsetCommitRequest |
04 |
import kafka.common.{ErrorMapping, OffsetMetadataAndError, TopicAndPartition} |
05 |
import kafka.consumer.SimpleConsumer |
06 |
import org.apache.spark.SparkException |
07 |
import org.apache.spark.streaming.kafka.KafkaCluster.SimpleConsumerConfig |
09 |
import scala.collection.mutable.ArrayBuffer |
10 |
import scala.util.Random |
11 |
import scala.util.control.NonFatal |
23 |
class KafkaCluster( val kafkaParams : Map[String, String]) extends Serializable { |
24 |
type Err = ArrayBuffer[Throwable] |
26 |
@ transient private var _ config : SimpleConsumerConfig = null |
28 |
def config : SimpleConsumerConfig = this .synchronized { |
29 |
if ( _ config == null ) { |
30 |
_ config = SimpleConsumerConfig(kafkaParams) |
35 |
def setConsumerOffsets(groupId : String, |
36 |
offsets : Map[TopicAndPartition, Long] |
37 |
) : Either[Err, Map[TopicAndPartition, Short]] = { |
38 |
setConsumerOffsetMetadata(groupId, offsets.map { kv = > |
39 |
kv. _ 1 -> OffsetMetadataAndError(kv. _ 2 ) |
43 |
def setConsumerOffsetMetadata(groupId : String, |
44 |
metadata : Map[TopicAndPartition, OffsetMetadataAndError] |
45 |
) : Either[Err, Map[TopicAndPartition, Short]] = { |
46 |
var result = Map[TopicAndPartition, Short]() |
47 |
val req = OffsetCommitRequest(groupId, metadata) |
49 |
val topicAndPartitions = metadata.keySet |
50 |
withBrokers(Random.shuffle(config.seedBrokers), errs) { consumer = > |
51 |
val resp = consumer.commitOffsets(req) |
52 |
val respMap = resp.requestInfo |
53 |
val needed = topicAndPartitions.diff(result.keySet) |
54 |
needed.foreach { tp : TopicAndPartition = > |
55 |
respMap.get(tp).foreach { err : Short = > |
56 |
if (err == ErrorMapping.NoError) { |
59 |
errs.append(ErrorMapping.exceptionFor(err)) |
63 |
if (result.keys.size == topicAndPartitions.size) { |
67 |
val missing = topicAndPartitions.diff(result.keySet) |
68 |
errs.append( new SparkException(s "Couldn't set offsets for ${missing}" )) |
72 |
private def withBrokers(brokers : Iterable[(String, Int)], errs : Err) |
73 |
(fn : SimpleConsumer = > Any) : Unit = { |
74 |
brokers.foreach { hp = > |
75 |
var consumer : SimpleConsumer = null |
77 |
consumer = connect(hp. _ 1 , hp. _ 2 ) |
83 |
if (consumer ! = null ) { |
90 |
def connect(host : String, port : Int) : SimpleConsumer = |
91 |
new SimpleConsumer(host, port, config.socketTimeoutMs, |
92 |
config.socketReceiveBufferBytes, config.clientId) |