设计模式之美:Interpreter(解释器)
索引
给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子。
Given a language, define a represention for its grammar along with an interpreter that uses the representation to interpret sentences in the language.
AbstractExpression
- 声明一个抽象的解释操作,这个接口为抽象语法树中所有的节点所共享。
TerminalExpression
- 实现与文法中的终结符相关联的解释操作。
- 一个句子中的每一个终结符需要该类的一个实例。
NonterminalExpression
- 对文法中的规则的解释操作。
Context
- 包含解释器之外的一些全局信息。
Client
- 构建表示该语法定义的语言中一个特定的句子的抽象语法树。
- 调用解释操作
当有个语言需要解释执行,并且你可将该语言中的句子表示为一个抽象语法树时,可以使用 Interpreter 模式。
当存在以下情况时效果最好:
- 该文法简单对于复杂的文法,文法的类层次变得庞大而无法管理。
- 效率不是一个关键问题,最高效的解释器通常不是通过直接解释语法分析树实现的,而是首先将它们转换成另一种形式。
- 易于改变和扩展文法。
- 易于实现文法。
- 复杂的文法难以维护。
- 增加了新的解释表达式的方式。
- 抽象语法树是一个 Composite 模式的实例。
- 可以使用 Flyweight 模式在抽象语法树中共享终结符。
- 可以使用 Iterator 模式遍历解释器结构。
- 可以使用 Visitor 模式在一个类中维护抽象语法树中的各个节点的行为。
TerminalExpression:实现解释 Terminal Symbols 的语法。
NonTerminalExpression:聚合一到多个 Expression,Expression 可以是 TerminalExpression,也可以是 NonTerminalExpression。。
1 namespace InterpreterPattern.Implementation1 2 { 3 public class Context 4 { 5 public Context(string name) 6 { 7 Name = name; 8 } 9 10 public string Name { get; private set; } 11 } 12 13 public abstract class ExpressionBase 14 { 15 public abstract void Interpret(Context context); 16 } 17 18 public class TerminalExpression : ExpressionBase 19 { 20 public override void Interpret(Context context) 21 { 22 Console.WriteLine("Terminal Symbol {0}.", context.Name); 23 } 24 } 25 26 public class NonTerminalExpression : ExpressionBase 27 { 28 public ExpressionBase Expression1 { get; set; } 29 public ExpressionBase Expression2 { get; set; } 30 31 public override void Interpret(Context context) 32 { 33 Console.WriteLine("Non Terminal Symbol {0}.", context.Name); 34 Expression1.Interpret(context); 35 Expression2.Interpret(context); 36 } 37 } 38 39 public class Client 40 { 41 public void TestCase1() 42 { 43 var context = new Context("Hello World"); 44 var root = new NonTerminalExpression 45 { 46 Expression1 = new TerminalExpression(), 47 Expression2 = new TerminalExpression() 48 }; 49 root.Interpret(context); 50 } 51 } 52 }
实现方式(二):解释波兰表达式(Polish Notation)。
中缀表达式
中缀表达式中,二元运算符总是置于与之相关的两个运算对象之间,根据运算符间的优先关系来确定运算的次序,同时考虑括号规则。
比如: 2 + 3 * (5 - 1)
前缀表达式
波兰逻辑学家 J.Lukasiewicz 于 1929 年提出了一种不需要括号的表示法,将运算符写在运算对象之前,也就是前缀表达式,即波兰式(Polish Notation, PN)。
比如:2 + 3 * (5 - 1) 这个表达式的前缀表达式为 + 2 * 3 - 5 1。
后缀表达式
后缀表达式也称为逆波兰式(Reverse Polish Notation, RPN),和前缀表达式相反,是将运算符号放置于运算对象之后。
比如:2 + 3 * (5 - 1) 用逆波兰式来表示则是:2 3 5 1 - * +。
1 namespace InterpreterPattern.Implementation2 2 { 3 public interface IExpression 4 { 5 int Evaluate(); 6 } 7 8 public class IntegerTerminalExpression : IExpression 9 { 10 int _value; 11 12 public IntegerTerminalExpression(int value) 13 { 14 _value = value; 15 } 16 17 public int Evaluate() 18 { 19 return _value; 20 } 21 22 public override string ToString() 23 { 24 return _value.ToString(); 25 } 26 } 27 28 public class AdditionNonterminalExpression : IExpression 29 { 30 private IExpression _expr1; 31 private IExpression _expr2; 32 33 public AdditionNonterminalExpression( 34 IExpression expr1, 35 IExpression expr2) 36 { 37 _expr1 = expr1; 38 _expr2 = expr2; 39 } 40 41 public int Evaluate() 42 { 43 int value1 = _expr1.Evaluate(); 44 int value2 = _expr2.Evaluate(); 45 return value1 + value2; 46 } 47 48 public override string ToString() 49 { 50 return string.Format("({0} + {1})", _expr1, _expr2); 51 } 52 } 53 54 public class SubtractionNonterminalExpression : IExpression 55 { 56 private IExpression _expr1; 57 private IExpression _expr2; 58 59 public SubtractionNonterminalExpression( 60 IExpression expr1, 61 IExpression expr2) 62 { 63 _expr1 = expr1; 64 _expr2 = expr2; 65 } 66 67 public int Evaluate() 68 { 69 int value1 = _expr1.Evaluate(); 70 int value2 = _expr2.Evaluate(); 71 return value1 - value2; 72 } 73 74 public override string ToString() 75 { 76 return string.Format("({0} - {1})", _expr1, _expr2); 77 } 78 } 79 80 public interface IParser 81 { 82 IExpression Parse(string polish); 83 } 84 85 public class Parser : IParser 86 { 87 public IExpression Parse(string polish) 88 { 89 var symbols = new List<string>(polish.Split(' ')); 90 return ParseNextExpression(symbols); 91 } 92 93 private IExpression ParseNextExpression(List<string> symbols) 94 { 95 int value; 96 if (int.TryParse(symbols[0], out value)) 97 { 98 symbols.RemoveAt(0); 99 return new IntegerTerminalExpression(value); 100 } 101 return ParseNonTerminalExpression(symbols); 102 } 103 104 private IExpression ParseNonTerminalExpression(List<string> symbols) 105 { 106 var symbol = symbols[0]; 107 symbols.RemoveAt(0); 108 109 var expr1 = ParseNextExpression(symbols); 110 var expr2 = ParseNextExpression(symbols); 111 112 switch (symbol) 113 { 114 case "+": 115 return new AdditionNonterminalExpression(expr1, expr2); 116 case "-": 117 return new SubtractionNonterminalExpression(expr1, expr2); 118 default: 119 { 120 string message = string.Format("Invalid Symbol ({0})", symbol); 121 throw new InvalidOperationException(message); 122 } 123 } 124 } 125 } 126 127 public class Client 128 { 129 public void TestCase2() 130 { 131 IParser parser = new Parser(); 132 133 var commands = 134 new string[] 135 { 136 "+ 1 2", 137 "- 3 4", 138 "+ - 5 6 7", 139 "+ 8 - 9 1", 140 "+ - + - - 2 3 4 + - -5 6 + -7 8 9 0" 141 }; 142 143 foreach (var command in commands) 144 { 145 IExpression expression = parser.Parse(command); 146 Console.WriteLine("{0} = {1}", expression, expression.Evaluate()); 147 } 148 149 // Results: 150 // (1 + 2) = 3 151 // (3 - 4) = -1 152 // ((5 - 6) + 7) = 6 153 // (8 + (9 - 1)) = 16 154 // (((((2 - 3) - 4) + ((-5 - 6) + (-7 + 8))) - 9) + 0) = -24 155 } 156 } 157 }
《设计模式之美》为 Dennis Gao 发布于博客园的系列文章,任何未经作者本人同意的人为或爬虫转载均为耍流氓。