「6月雅礼集训 2017 Day11」delight

【题目大意】

有$n$天,每天能吃饭、睡觉、什么事也不干

每天吃饭的愉悦值为$e_i$,睡觉的愉悦值为$s_i$,什么都不干愉悦值为0。

要求每连续$k$天都要有至少$E$天吃饭,$S$天睡觉。

求最大愉悦值。

$k \leq n \leq 1000, 0\leq s_i, e_i \leq 10^9, 0 \leq E+S \leq k$

【题解】

首先什么都不干这个是xjb写的肯定没有用。。

然后我们考虑费用流,我钦定n天都睡觉,那么假设有一天吃饭,那么我们换成吃饭的费用就是$e_i-s_i$。

两个限制只要考虑一个即可,因为另外一个一定满足了。

如果只有睡觉的限制,那么我们要满足的就是从$i$连到$i+1$的,容量不能超过$S$,在$i$连到$i+1$的边都表示这天我睡觉(因为已经钦定了),容量$S$,费用0。

那么吃饭没有限制,就可以从每个$i$连到$i+K$(不够的话到汇点),容量为1,费用为$e_i-s_i$。

然后我们就是求最大费用最大流。

考虑有了限制,相当于我从$i$到$i+1$的边容量变为$r-l$(上界-下界),就代表我一定要有吃饭的流量。

从$i$到$i+1$画一条纵截线,与其相交并且是$i$到$i+k$这样的边至少有$l$个。

我们再对源点容量做一下限制即可。

复杂度$O(costflow(n, 2n))$

upd: 我们把每个$k$天区间变换成$[i-k+1,i]$这样的末尾$i$表示,那么第$i$天选择吃饭,就会对于$[i, \min(i+k-1, n)]$有贡献。

问题变成,选出若干区间,使得$(k, k+1, ..., n)$都被覆盖了$[E, k-S]$次。

这里写图片描述

显然这个图可以满流,那么最大流量就是$\max_e$,也就是$k-S$,一定会流满。

那么我们限制了$i$到$i+1$的边流量为$[0, k-S-E]$,就相当于设置$i$到$i+k$的边的流量至少为$E$了。

这样就满足题目要求了

# include <queue>
# include <stdio.h>
# include <string.h>
# include <iostream>
# include <algorithm>

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;

const int N = 1e5 + 10, M = 1e5 + 10;
const ll inf = 1e17 + 10;

int n, K, SS, EE;
int s[M], e[M];

int S, T;
int head[M], nxt[M], to[M], w[M], flow[M], tot = 1;
inline void add(int u, int v, int fl, int _w) {
    ++tot; nxt[tot] = head[u]; head[u] = tot; to[tot] = v;
    flow[tot] = fl, w[tot] = _w;
}
inline void adde(int u, int v, int fl, int _w) {
    add(u, v, fl, _w);
    add(v, u, 0, -_w);
}

namespace MCF {
    queue<int> q;
    int pre[M];
    ll d[M];  bool vis[M];
    inline bool spfa() {
        while(!q.empty()) q.pop();
        for (int i=1; i<=T; ++i) vis[i] = 0, d[i] = inf;
        vis[S] = 1; d[S] = 0; q.push(S);
        while(!q.empty()) {
            int top = q.front(); q.pop(); vis[top] = 0;
            for (int i=head[top]; i; i=nxt[i]) {
                if(d[to[i]] > d[top] + w[i] && flow[i]) {
                    d[to[i]] = d[top] + w[i];
                    pre[to[i]] = i;
                    if(!vis[to[i]]) {
                        vis[to[i]] = 1;
                        q.push(to[i]);
                    }
                }
            }
        }
        return d[T] < inf;
    }
    inline ll mcf() {
        int fl = 1e9; ll ret = 0;
        for (int i=pre[T]; i; i=pre[to[i^1]]) fl = min(fl, flow[i]);
        for (int i=pre[T]; i; i=pre[to[i^1]]) {
            flow[i] -= fl; flow[i^1] += fl;
            ret += 1ll * fl * w[i];
        }
        return ret;
    }
    inline ll main() {
        ll ans = 0;
        while(spfa()) ans += mcf();
        return ans;
    }
}

int main() {
//  freopen("delight.in", "r", stdin);
//  freopen("delight.out", "w", stdout);
    cin >> n >> K >> SS >> EE;
    ll sum = 0;
    for (int i=1; i<=n; ++i) {
        scanf("%d", &s[i]);
        sum += s[i];
    }
    for (int i=1; i<=n; ++i) {
        scanf("%d", &e[i]);
        e[i] -= s[i];
    }
    int mi = EE, mx = K - SS;
    int S0 = n+1; S = n+2; T = n+3;
    //  [mi, mx] 
    adde(S, S0, mx, 0);
    for (int i=1; i<=n; ++i) {
        if(i <= K) adde(S0, i, 1e9, 0);
        if(i+1 <= n) adde(i, i+1, mx-mi, 0);
        else adde(i, T, mx-mi, 0);
        if(i+K <= n) adde(i, i+K, 1, -e[i]);
        else adde(i, T, 1, -e[i]);
    }
    cout << sum - MCF::main() << endl;
    
    return 0;
}
View Code

 

posted @ 2017-06-27 15:56  Galaxies  阅读(647)  评论(1编辑  收藏  举报