Flink – WindowedStream

在WindowedStream上可以执行,如reduce,aggregate,min,max等操作

关键是要理解windowOperator对KVState的运用,因为window是用它来存储window buffer的

采用不同的KVState,会有不同的效果,如ReduceState,ListState

 

Reduce

 

/**
     * Applies the given window function to each window. The window function is called for each
     * evaluation of the window for each key individually. The output of the window function is
     * interpreted as a regular non-windowed stream.
     *
     * <p>
     * Arriving data is incrementally aggregated using the given reducer.
     *
     * @param reduceFunction The reduce function that is used for incremental aggregation.
     * @param function The window function.
     * @param resultType Type information for the result type of the window function.
     * @param legacyWindowOpType When migrating from an older Flink version, this flag indicates
     *                           the type of the previous operator whose state we inherit.
     * @return The data stream that is the result of applying the window function to the window.
     */
    private <R> SingleOutputStreamOperator<R> reduce(
            ReduceFunction<T> reduceFunction,
            WindowFunction<T, R, K, W> function,
            TypeInformation<R> resultType,
            LegacyWindowOperatorType legacyWindowOpType) {

        String opName;
        KeySelector<T, K> keySel = input.getKeySelector();

        OneInputStreamOperator<T, R> operator;

        if (evictor != null) {
            @SuppressWarnings({"unchecked", "rawtypes"})
            TypeSerializer<StreamRecord<T>> streamRecordSerializer =
                (TypeSerializer<StreamRecord<T>>) new StreamElementSerializer(input.getType().createSerializer(getExecutionEnvironment().getConfig()));

            ListStateDescriptor<StreamRecord<T>> stateDesc = //如果有evictor,这里state是list state,需要把windows整个cache下来,这样才能去evict
                new ListStateDescriptor<>("window-contents", streamRecordSerializer);

            opName = "TriggerWindow(" + windowAssigner + ", " + stateDesc + ", " + trigger + ", " + evictor + ", " + udfName + ")"; //reduce的op name是这样拼的,可以看出window的所有相关配置

            operator =
                new EvictingWindowOperator<>(windowAssigner,
                    windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()),
                    keySel,
                    input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()),
                    stateDesc,
                    new InternalIterableWindowFunction<>(new ReduceApplyWindowFunction<>(reduceFunction, function)),
                    trigger,
                    evictor,
                    allowedLateness);

        } else { //如果没有evictor
            ReducingStateDescriptor<T> stateDesc = new ReducingStateDescriptor<>("window-contents", //这里就是ReducingState,不需要cache整个list,所以效率更高
                reduceFunction, //reduce的逻辑
                input.getType().createSerializer(getExecutionEnvironment().getConfig()));

            opName = "TriggerWindow(" + windowAssigner + ", " + stateDesc + ", " + trigger + ", " + udfName + ")";

            operator =
                new WindowOperator<>(windowAssigner,
                    windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()),
                    keySel,
                    input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()),
                    stateDesc,
                    new InternalSingleValueWindowFunction<>(function),
                    trigger,
                    allowedLateness,
                    legacyWindowOpType);
        }

        return input.transform(opName, resultType, operator);
    }

 

reduceFunction,就是reduce的逻辑,一般只是指定这个参数

 

WindowFunction<T, R, K, W> function

TypeInformation<R> resultType

   /**
     * Applies a reduce function to the window. The window function is called for each evaluation
     * of the window for each key individually. The output of the reduce function is interpreted
     * as a regular non-windowed stream.
     */

这个function是WindowFunction,在window被fire时调用,resultType是WindowFunction的返回值,通过reduce,windowedStream会成为non-windowed stream

   /**
     * Emits the contents of the given window using the {@link InternalWindowFunction}.
     */
    @SuppressWarnings("unchecked")
    private void emitWindowContents(W window, ACC contents) throws Exception {
        timestampedCollector.setAbsoluteTimestamp(window.maxTimestamp());
        userFunction.apply(context.key, context.window, contents, timestampedCollector);
    }

可以看到WindowFunction是对于每个key的window都会调用一遍

public void onEventTime(InternalTimer<K, W> timer) throws Exception {

    TriggerResult triggerResult = context.onEventTime(timer.getTimestamp());
    if (triggerResult.isFire()) {
        emitWindowContents(context.window, contents); //当window被fire的时候,调用
    }
}

context.window是记录window的元数据,比如TimeWindow记录开始,结束时间
contents,是windowState,包含真正的数据

 

默认不指定,给定是

PassThroughWindowFunction
public class PassThroughWindowFunction<K, W extends Window, T> implements WindowFunction<T, T, K, W> {

    private static final long serialVersionUID = 1L;

    @Override
    public void apply(K k, W window, Iterable<T> input, Collector<T> out) throws Exception {
        for (T in: input) {
            out.collect(in);
        }
    }
}

 

继续现在WindowOperator

    @Override
    public void processElement(StreamRecord<IN> element) throws Exception {
    
        for (W window: elementWindows) { //对于每个被assign的window

            // drop if the window is already late
            if (isLate(window)) {
                continue;
            }

            windowState.setCurrentNamespace(window);
            windowState.add(element.getValue()); //add element的值

 

windowState在WindowOperator.open中被初始化,

     public void open() throws Exception {
        // create (or restore) the state that hold the actual window contents
        // NOTE - the state may be null in the case of the overriding evicting window operator
        if (windowStateDescriptor != null) {
            windowState = (InternalAppendingState<W, IN, ACC>) getOrCreateKeyedState(windowSerializer, windowStateDescriptor);
        }

 

AbstractStreamOperator
     protected <N, S extends State, T> S getOrCreateKeyedState(
            TypeSerializer<N> namespaceSerializer,
            StateDescriptor<S, T> stateDescriptor) throws Exception {

        if (keyedStateStore != null) {
            return keyedStateBackend.getOrCreateKeyedState(namespaceSerializer, stateDescriptor);
        }

 

AbstractKeyedStateBackend
     public <N, S extends State, V> S getOrCreateKeyedState(
            final TypeSerializer<N> namespaceSerializer,
            StateDescriptor<S, V> stateDescriptor) throws Exception {

        // create a new blank key/value state
        S state = stateDescriptor.bind(new StateBackend() {
            @Override
            public <T> ValueState<T> createValueState(ValueStateDescriptor<T> stateDesc) throws Exception {
                return AbstractKeyedStateBackend.this.createValueState(namespaceSerializer, stateDesc);
            }

            @Override
            public <T> ListState<T> createListState(ListStateDescriptor<T> stateDesc) throws Exception {
                return AbstractKeyedStateBackend.this.createListState(namespaceSerializer, stateDesc);
            }

            @Override
            public <T> ReducingState<T> createReducingState(ReducingStateDescriptor<T> stateDesc) throws Exception {
                return AbstractKeyedStateBackend.this.createReducingState(namespaceSerializer, stateDesc);
            }

            @Override
            public <T, ACC, R> AggregatingState<T, R> createAggregatingState(
                    AggregatingStateDescriptor<T, ACC, R> stateDesc) throws Exception {
                return AbstractKeyedStateBackend.this.createAggregatingState(namespaceSerializer, stateDesc);
            }

可以看到这里根据不同的StateDescriptor调用bind,会生成不同的state

如果前面用的是ReducingStateDescriptor

    @Override
    public ReducingState<T> bind(StateBackend stateBackend) throws Exception {
        return stateBackend.createReducingState(this);
    }

 

所以如果用的是RockDB,

那么创建的是RocksDBReducingState

所以调用add的逻辑,

public class RocksDBReducingState<K, N, V>
    extends AbstractRocksDBState<K, N, ReducingState<V>, ReducingStateDescriptor<V>, V>
    implements InternalReducingState<N, V> {
    @Override
    public void add(V value) throws IOException {
        try {
            writeCurrentKeyWithGroupAndNamespace();
            byte[] key = keySerializationStream.toByteArray();
            byte[] valueBytes = backend.db.get(columnFamily, key);

            DataOutputViewStreamWrapper out = new DataOutputViewStreamWrapper(keySerializationStream);
            if (valueBytes == null) {
                keySerializationStream.reset();
                valueSerializer.serialize(value, out);
                backend.db.put(columnFamily, writeOptions, key, keySerializationStream.toByteArray());
            } else {
                V oldValue = valueSerializer.deserialize(new DataInputViewStreamWrapper(new ByteArrayInputStream(valueBytes)));
                V newValue = reduceFunction.reduce(oldValue, value); //使用reduce函数合并value
                keySerializationStream.reset();
                valueSerializer.serialize(newValue, out);
                backend.db.put(columnFamily, writeOptions, key, keySerializationStream.toByteArray()); //将新的value put到backend中
            }
        } catch (Exception e) {
            throw new RuntimeException("Error while adding data to RocksDB", e);
        }
    }

 

aggregate

这里用AggregatingStateDescriptor

并且多个参数,TypeInformation<ACC> accumulatorType,因为aggregate是不断的更新这个accumulator

/**
     * Applies the given window function to each window. The window function is called for each
     * evaluation of the window for each key individually. The output of the window function is
     * interpreted as a regular non-windowed stream.
     *
     * <p>Arriving data is incrementally aggregated using the given aggregate function. This means
     * that the window function typically has only a single value to process when called.
     *
     * @param aggregateFunction The aggregation function that is used for incremental aggregation.
     * @param windowFunction The window function.
     * @param accumulatorType Type information for the internal accumulator type of the aggregation function
     * @param resultType Type information for the result type of the window function
     *    
     * @return The data stream that is the result of applying the window function to the window.
     * 
     * @param <ACC> The type of the AggregateFunction's accumulator
     * @param <V> The type of AggregateFunction's result, and the WindowFunction's input  
     * @param <R> The type of the elements in the resulting stream, equal to the
     *            WindowFunction's result type
     */
    public <ACC, V, R> SingleOutputStreamOperator<R> aggregate(
            AggregateFunction<T, ACC, V> aggregateFunction,
            WindowFunction<V, R, K, W> windowFunction, 
            TypeInformation<ACC> accumulatorType,
            TypeInformation<V> aggregateResultType,
            TypeInformation<R> resultType) {


        if (evictor != null) {

          //evictor仍然是用ListState
        } else {
            AggregatingStateDescriptor<T, ACC, V> stateDesc = new AggregatingStateDescriptor<>("window-contents",
                    aggregateFunction, accumulatorType.createSerializer(getExecutionEnvironment().getConfig()));

            opName = "TriggerWindow(" + windowAssigner + ", " + stateDesc + ", " + trigger + ", " + udfName + ")";

            operator = new WindowOperator<>(windowAssigner,
                    windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()),
                    keySel,
                    input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()),
                    stateDesc,
                    new InternalSingleValueWindowFunction<>(windowFunction),
                    trigger,
                    allowedLateness);
        }

        return input.transform(opName, resultType, operator);
    }

最终用到,

RocksDBAggregatingState
    @Override
    public R get() throws IOException {
        try {
            // prepare the current key and namespace for RocksDB lookup
            writeCurrentKeyWithGroupAndNamespace();
            final byte[] key = keySerializationStream.toByteArray();

            // get the current value
            final byte[] valueBytes = backend.db.get(columnFamily, key);

            if (valueBytes == null) {
                return null;
            }

            ACC accumulator = valueSerializer.deserialize(new DataInputViewStreamWrapper(new ByteArrayInputStreamWithPos(valueBytes)));
            return aggFunction.getResult(accumulator); //返回accumulator的值
        }
        catch (IOException | RocksDBException e) {
            throw new IOException("Error while retrieving value from RocksDB", e);
        }
    }

    @Override
    public void add(T value) throws IOException {
        try {
            // prepare the current key and namespace for RocksDB lookup
            writeCurrentKeyWithGroupAndNamespace();
            final byte[] key = keySerializationStream.toByteArray();
            keySerializationStream.reset();

            // get the current value
            final byte[] valueBytes = backend.db.get(columnFamily, key);

            // deserialize the current accumulator, or create a blank one
            final ACC accumulator = valueBytes == null ? //create new或从state中反序列化出来
                    aggFunction.createAccumulator() :
                    valueSerializer.deserialize(new DataInputViewStreamWrapper(new ByteArrayInputStreamWithPos(valueBytes)));

            // aggregate the value into the accumulator
            aggFunction.add(value, accumulator); //更新accumulator

            // serialize the new accumulator
            final DataOutputViewStreamWrapper out = new DataOutputViewStreamWrapper(keySerializationStream);
            valueSerializer.serialize(accumulator, out);

            // write the new value to RocksDB
            backend.db.put(columnFamily, writeOptions, key, keySerializationStream.toByteArray());
        }
        catch (IOException | RocksDBException e) {
            throw new IOException("Error while adding value to RocksDB", e);
        }
    }

 

给个aggFunction的例子,

    private static class AddingFunction implements AggregateFunction<Long, MutableLong, Long> {

        @Override
        public MutableLong createAccumulator() {
            return new MutableLong();
        }

        @Override
        public void add(Long value, MutableLong accumulator) {
            accumulator.value += value;
        }

        @Override
        public Long getResult(MutableLong accumulator) {
            return accumulator.value;
        }

        @Override
        public MutableLong merge(MutableLong a, MutableLong b) {
            a.value += b.value;
            return a;
        }
    }

    private static final class MutableLong {
        long value;
    }

aggregate和reduce比,更通用,

reduce, A1 reduce A2 = A3

aggregate,a1 a2… aggregate = b

 

apply

更通用,就是不会再cache的时候做预算,而是需要cache整个windows数据,在触发的时候再apply

   /**
     * Applies the given window function to each window. The window function is called for each
     * evaluation of the window for each key individually. The output of the window function is
     * interpreted as a regular non-windowed stream.
     *
     * <p>
     * Note that this function requires that all data in the windows is buffered until the window
     * is evaluated, as the function provides no means of incremental aggregation.
     *
     * @param function The window function.
     * @param resultType Type information for the result type of the window function
     * @return The data stream that is the result of applying the window function to the window.
     */
    public <R> SingleOutputStreamOperator<R> apply(WindowFunction<T, R, K, W> function, TypeInformation<R> resultType) {

        if (evictor != null) {
            //
        } else {
            ListStateDescriptor<T> stateDesc = new ListStateDescriptor<>("window-contents", //因为要cache所有数据,所以一定是ListState
                input.getType().createSerializer(getExecutionEnvironment().getConfig()));

            opName = "TriggerWindow(" + windowAssigner + ", " + stateDesc + ", " + trigger + ", " + udfName + ")";

            operator =
                new WindowOperator<>(windowAssigner,
                    windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()),
                    keySel,
                    input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()),
                    stateDesc,
                    new InternalIterableWindowFunction<>(function),
                    trigger,
                    allowedLateness,
                    legacyWindowOpType);
        }

        return input.transform(opName, resultType, operator);
    }

这里就很简单了,你必须要给出WindowFunction,用于处理window触发时的结果

这里也需要指明resultType

而且使用ListStateDescriptor,这种state只是把element加到list中

 

 

AggregationFunction

如sum,min,max

   /**
     * Applies an aggregation that sums every window of the data stream at the
     * given position.
     *
     * @param positionToSum The position in the tuple/array to sum
     * @return The transformed DataStream.
     */
    public SingleOutputStreamOperator<T> sum(int positionToSum) {
        return aggregate(new SumAggregator<>(positionToSum, input.getType(), input.getExecutionConfig()));
    }

 

public class SumAggregator<T> extends AggregationFunction<T> {

 

public abstract class AggregationFunction<T> implements ReduceFunction<T> {
    private static final long serialVersionUID = 1L;

    public enum AggregationType {
        SUM, MIN, MAX, MINBY, MAXBY,
    }

}

可以看到,无法顾名思义,这些AggregationFunction,是用reduce实现的

posted on 2017-03-21 17:27  fxjwind  阅读(2583)  评论(0编辑  收藏  举报