Flink – WindowedStream
在WindowedStream上可以执行,如reduce,aggregate,min,max等操作
关键是要理解windowOperator对KVState的运用,因为window是用它来存储window buffer的
采用不同的KVState,会有不同的效果,如ReduceState,ListState
Reduce
/** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * * <p> * Arriving data is incrementally aggregated using the given reducer. * * @param reduceFunction The reduce function that is used for incremental aggregation. * @param function The window function. * @param resultType Type information for the result type of the window function. * @param legacyWindowOpType When migrating from an older Flink version, this flag indicates * the type of the previous operator whose state we inherit. * @return The data stream that is the result of applying the window function to the window. */ private <R> SingleOutputStreamOperator<R> reduce( ReduceFunction<T> reduceFunction, WindowFunction<T, R, K, W> function, TypeInformation<R> resultType, LegacyWindowOperatorType legacyWindowOpType) { String opName; KeySelector<T, K> keySel = input.getKeySelector(); OneInputStreamOperator<T, R> operator; if (evictor != null) { @SuppressWarnings({"unchecked", "rawtypes"}) TypeSerializer<StreamRecord<T>> streamRecordSerializer = (TypeSerializer<StreamRecord<T>>) new StreamElementSerializer(input.getType().createSerializer(getExecutionEnvironment().getConfig())); ListStateDescriptor<StreamRecord<T>> stateDesc = //如果有evictor,这里state是list state,需要把windows整个cache下来,这样才能去evict new ListStateDescriptor<>("window-contents", streamRecordSerializer); opName = "TriggerWindow(" + windowAssigner + ", " + stateDesc + ", " + trigger + ", " + evictor + ", " + udfName + ")"; //reduce的op name是这样拼的,可以看出window的所有相关配置 operator = new EvictingWindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalIterableWindowFunction<>(new ReduceApplyWindowFunction<>(reduceFunction, function)), trigger, evictor, allowedLateness); } else { //如果没有evictor ReducingStateDescriptor<T> stateDesc = new ReducingStateDescriptor<>("window-contents", //这里就是ReducingState,不需要cache整个list,所以效率更高 reduceFunction, //reduce的逻辑 input.getType().createSerializer(getExecutionEnvironment().getConfig())); opName = "TriggerWindow(" + windowAssigner + ", " + stateDesc + ", " + trigger + ", " + udfName + ")"; operator = new WindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalSingleValueWindowFunction<>(function), trigger, allowedLateness, legacyWindowOpType); } return input.transform(opName, resultType, operator); }
reduceFunction,就是reduce的逻辑,一般只是指定这个参数
WindowFunction<T, R, K, W> function
TypeInformation<R> resultType
/** * Applies a reduce function to the window. The window function is called for each evaluation * of the window for each key individually. The output of the reduce function is interpreted * as a regular non-windowed stream. */
这个function是WindowFunction,在window被fire时调用,resultType是WindowFunction的返回值,通过reduce,windowedStream会成为non-windowed stream
/** * Emits the contents of the given window using the {@link InternalWindowFunction}. */ @SuppressWarnings("unchecked") private void emitWindowContents(W window, ACC contents) throws Exception { timestampedCollector.setAbsoluteTimestamp(window.maxTimestamp()); userFunction.apply(context.key, context.window, contents, timestampedCollector); }
可以看到WindowFunction是对于每个key的window都会调用一遍
public void onEventTime(InternalTimer<K, W> timer) throws Exception { TriggerResult triggerResult = context.onEventTime(timer.getTimestamp()); if (triggerResult.isFire()) { emitWindowContents(context.window, contents); //当window被fire的时候,调用 } }
context.window是记录window的元数据,比如TimeWindow记录开始,结束时间
contents,是windowState,包含真正的数据
默认不指定,给定是
PassThroughWindowFunction
public class PassThroughWindowFunction<K, W extends Window, T> implements WindowFunction<T, T, K, W> { private static final long serialVersionUID = 1L; @Override public void apply(K k, W window, Iterable<T> input, Collector<T> out) throws Exception { for (T in: input) { out.collect(in); } } }
继续现在WindowOperator
@Override public void processElement(StreamRecord<IN> element) throws Exception { for (W window: elementWindows) { //对于每个被assign的window // drop if the window is already late if (isLate(window)) { continue; } windowState.setCurrentNamespace(window); windowState.add(element.getValue()); //add element的值
windowState在WindowOperator.open中被初始化,
public void open() throws Exception { // create (or restore) the state that hold the actual window contents // NOTE - the state may be null in the case of the overriding evicting window operator if (windowStateDescriptor != null) { windowState = (InternalAppendingState<W, IN, ACC>) getOrCreateKeyedState(windowSerializer, windowStateDescriptor); }
AbstractStreamOperator
protected <N, S extends State, T> S getOrCreateKeyedState( TypeSerializer<N> namespaceSerializer, StateDescriptor<S, T> stateDescriptor) throws Exception { if (keyedStateStore != null) { return keyedStateBackend.getOrCreateKeyedState(namespaceSerializer, stateDescriptor); }
AbstractKeyedStateBackend
public <N, S extends State, V> S getOrCreateKeyedState( final TypeSerializer<N> namespaceSerializer, StateDescriptor<S, V> stateDescriptor) throws Exception { // create a new blank key/value state S state = stateDescriptor.bind(new StateBackend() { @Override public <T> ValueState<T> createValueState(ValueStateDescriptor<T> stateDesc) throws Exception { return AbstractKeyedStateBackend.this.createValueState(namespaceSerializer, stateDesc); } @Override public <T> ListState<T> createListState(ListStateDescriptor<T> stateDesc) throws Exception { return AbstractKeyedStateBackend.this.createListState(namespaceSerializer, stateDesc); } @Override public <T> ReducingState<T> createReducingState(ReducingStateDescriptor<T> stateDesc) throws Exception { return AbstractKeyedStateBackend.this.createReducingState(namespaceSerializer, stateDesc); } @Override public <T, ACC, R> AggregatingState<T, R> createAggregatingState( AggregatingStateDescriptor<T, ACC, R> stateDesc) throws Exception { return AbstractKeyedStateBackend.this.createAggregatingState(namespaceSerializer, stateDesc); }
可以看到这里根据不同的StateDescriptor调用bind,会生成不同的state
如果前面用的是ReducingStateDescriptor
@Override public ReducingState<T> bind(StateBackend stateBackend) throws Exception { return stateBackend.createReducingState(this); }
所以如果用的是RockDB,
那么创建的是RocksDBReducingState
所以调用add的逻辑,
public class RocksDBReducingState<K, N, V> extends AbstractRocksDBState<K, N, ReducingState<V>, ReducingStateDescriptor<V>, V> implements InternalReducingState<N, V> { @Override public void add(V value) throws IOException { try { writeCurrentKeyWithGroupAndNamespace(); byte[] key = keySerializationStream.toByteArray(); byte[] valueBytes = backend.db.get(columnFamily, key); DataOutputViewStreamWrapper out = new DataOutputViewStreamWrapper(keySerializationStream); if (valueBytes == null) { keySerializationStream.reset(); valueSerializer.serialize(value, out); backend.db.put(columnFamily, writeOptions, key, keySerializationStream.toByteArray()); } else { V oldValue = valueSerializer.deserialize(new DataInputViewStreamWrapper(new ByteArrayInputStream(valueBytes))); V newValue = reduceFunction.reduce(oldValue, value); //使用reduce函数合并value keySerializationStream.reset(); valueSerializer.serialize(newValue, out); backend.db.put(columnFamily, writeOptions, key, keySerializationStream.toByteArray()); //将新的value put到backend中 } } catch (Exception e) { throw new RuntimeException("Error while adding data to RocksDB", e); } }
aggregate
这里用AggregatingStateDescriptor
并且多个参数,TypeInformation<ACC> accumulatorType,因为aggregate是不断的更新这个accumulator
/** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * * <p>Arriving data is incrementally aggregated using the given aggregate function. This means * that the window function typically has only a single value to process when called. * * @param aggregateFunction The aggregation function that is used for incremental aggregation. * @param windowFunction The window function. * @param accumulatorType Type information for the internal accumulator type of the aggregation function * @param resultType Type information for the result type of the window function * * @return The data stream that is the result of applying the window function to the window. * * @param <ACC> The type of the AggregateFunction's accumulator * @param <V> The type of AggregateFunction's result, and the WindowFunction's input * @param <R> The type of the elements in the resulting stream, equal to the * WindowFunction's result type */ public <ACC, V, R> SingleOutputStreamOperator<R> aggregate( AggregateFunction<T, ACC, V> aggregateFunction, WindowFunction<V, R, K, W> windowFunction, TypeInformation<ACC> accumulatorType, TypeInformation<V> aggregateResultType, TypeInformation<R> resultType) { if (evictor != null) { //evictor仍然是用ListState } else { AggregatingStateDescriptor<T, ACC, V> stateDesc = new AggregatingStateDescriptor<>("window-contents", aggregateFunction, accumulatorType.createSerializer(getExecutionEnvironment().getConfig())); opName = "TriggerWindow(" + windowAssigner + ", " + stateDesc + ", " + trigger + ", " + udfName + ")"; operator = new WindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalSingleValueWindowFunction<>(windowFunction), trigger, allowedLateness); } return input.transform(opName, resultType, operator); }
最终用到,
RocksDBAggregatingState
@Override public R get() throws IOException { try { // prepare the current key and namespace for RocksDB lookup writeCurrentKeyWithGroupAndNamespace(); final byte[] key = keySerializationStream.toByteArray(); // get the current value final byte[] valueBytes = backend.db.get(columnFamily, key); if (valueBytes == null) { return null; } ACC accumulator = valueSerializer.deserialize(new DataInputViewStreamWrapper(new ByteArrayInputStreamWithPos(valueBytes))); return aggFunction.getResult(accumulator); //返回accumulator的值 } catch (IOException | RocksDBException e) { throw new IOException("Error while retrieving value from RocksDB", e); } } @Override public void add(T value) throws IOException { try { // prepare the current key and namespace for RocksDB lookup writeCurrentKeyWithGroupAndNamespace(); final byte[] key = keySerializationStream.toByteArray(); keySerializationStream.reset(); // get the current value final byte[] valueBytes = backend.db.get(columnFamily, key); // deserialize the current accumulator, or create a blank one final ACC accumulator = valueBytes == null ? //create new或从state中反序列化出来 aggFunction.createAccumulator() : valueSerializer.deserialize(new DataInputViewStreamWrapper(new ByteArrayInputStreamWithPos(valueBytes))); // aggregate the value into the accumulator aggFunction.add(value, accumulator); //更新accumulator // serialize the new accumulator final DataOutputViewStreamWrapper out = new DataOutputViewStreamWrapper(keySerializationStream); valueSerializer.serialize(accumulator, out); // write the new value to RocksDB backend.db.put(columnFamily, writeOptions, key, keySerializationStream.toByteArray()); } catch (IOException | RocksDBException e) { throw new IOException("Error while adding value to RocksDB", e); } }
给个aggFunction的例子,
private static class AddingFunction implements AggregateFunction<Long, MutableLong, Long> { @Override public MutableLong createAccumulator() { return new MutableLong(); } @Override public void add(Long value, MutableLong accumulator) { accumulator.value += value; } @Override public Long getResult(MutableLong accumulator) { return accumulator.value; } @Override public MutableLong merge(MutableLong a, MutableLong b) { a.value += b.value; return a; } } private static final class MutableLong { long value; }
aggregate和reduce比,更通用,
reduce, A1 reduce A2 = A3
aggregate,a1 a2… aggregate = b
apply
更通用,就是不会再cache的时候做预算,而是需要cache整个windows数据,在触发的时候再apply
/** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * * <p> * Note that this function requires that all data in the windows is buffered until the window * is evaluated, as the function provides no means of incremental aggregation. * * @param function The window function. * @param resultType Type information for the result type of the window function * @return The data stream that is the result of applying the window function to the window. */ public <R> SingleOutputStreamOperator<R> apply(WindowFunction<T, R, K, W> function, TypeInformation<R> resultType) { if (evictor != null) { // } else { ListStateDescriptor<T> stateDesc = new ListStateDescriptor<>("window-contents", //因为要cache所有数据,所以一定是ListState input.getType().createSerializer(getExecutionEnvironment().getConfig())); opName = "TriggerWindow(" + windowAssigner + ", " + stateDesc + ", " + trigger + ", " + udfName + ")"; operator = new WindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalIterableWindowFunction<>(function), trigger, allowedLateness, legacyWindowOpType); } return input.transform(opName, resultType, operator); }
这里就很简单了,你必须要给出WindowFunction,用于处理window触发时的结果
这里也需要指明resultType
而且使用ListStateDescriptor,这种state只是把element加到list中
AggregationFunction
如sum,min,max
/** * Applies an aggregation that sums every window of the data stream at the * given position. * * @param positionToSum The position in the tuple/array to sum * @return The transformed DataStream. */ public SingleOutputStreamOperator<T> sum(int positionToSum) { return aggregate(new SumAggregator<>(positionToSum, input.getType(), input.getExecutionConfig())); }
public class SumAggregator<T> extends AggregationFunction<T> {
public abstract class AggregationFunction<T> implements ReduceFunction<T> { private static final long serialVersionUID = 1L; public enum AggregationType { SUM, MIN, MAX, MINBY, MAXBY, } }
可以看到,无法顾名思义,这些AggregationFunction,是用reduce实现的